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Diagnostic Methods in Machine Learning

Machine learning ≡ high dimensional non-parametric
prediction.

Enormously successful over past 30 years.

But, deliberately avoids assumptions:

Results in algebraically complex �black box� prediction
functions.
Provides little guidance as to what features are important or
how they a�ect predictions.

Historically, ML philosophy opposed to interpretability as a
consideration.

But heuristics (often from statisticians) often improved
popularity
e.g. Gradient Boosting (Friedman 2001) and Random Forests
(Brieman 2001).

Recent (last 5 years) more general rise in interest.
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The Doctor Just Won't Accept That

Rise in publicly-explicit use of ML, increased demand for
explanations of black box models.

Partly driven by professional fears.

But explanations/diagnostics ⇒ software popularity long
before.
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Why Care About Explanation?

Reasons to value insight into the black box:

Con�dence-building exercise (marketing)

Basis for evaluating disagreement between experts

Detection of anomalous/non-causal predictive behavior

Explanation/description of causal relationships

Subject access/transparency, legal obligations

But
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Agenda

Introduction

Part I: Global Interpretation

Variable Importance
Feature E�ects

Part II: Distillation

Interpretable models
Approximation by interpretable models
Stability and when to care about it

Part III: Local Explanations

Local importances: LIME, SHAP, saliency
Counterfactual Explanations
From local to global

Discussion

Most methods available in the iml package in R. See also Molnar,
2022, Interpretable Machine Learning
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Types of Explanation Strategy

Distinctions:

global/local : global patterns across whole populations vs "What
drove this particular prediction?"

model/summary/example : Mechanics of making a prediction
(human computability) vs indicator of important
e�ects vs how can I change prediction?

Global diagnostics usually about understanding a system

Hypothesis generation/pattern discovery/inference.
Sanity checks.

Local explanations driven by practitioner needs

Justi�cation, sanity check, recommendation

Can provide very di�erent information.

Common approaches to both have often been poorly thought
out.
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Some Notation and Nomenclature

Assume that we have a data set of n observations:

{(Xi ,Yi )}ni=1

(also examples, realizations, ...)

Each Xi is a vector of p covariates

Xi = (Xi1,Xi2, . . . ,Xip)

(also features, predictors, variables,...)

Data set is used to estimate (learn, train,...) a prediction

function F (x1, . . . , xp)

Use: Xi = row of data set, X·j = column (values for covariate
j), xj = variable value, x−j = vector without element j .

Desired: some way to �understand� F (x1, . . . , xp)
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Beijing Housing Data

Used for illustrations, predict log(totalPrice) from

Lat, Lng

Days On Market

online followers

square m

Number of

livingRoom
drawingRoom
kitchen
bathRoom

Building Type

Construction Date

Renovation

Building structure

Ladder Ratio (resident to
elevator capacity)

Elevator

Ownership > 5 years

Subway access

District

randomForest/R used for demonstrations, but observations apply
to all ML.
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Part I: Variable Importance

Which Features Matter and How Much?

Can be thought of in two ways

How much di�erence does changing the value of this feature
make?

How much information does including this feature add?

In linear models

Y = β0 +

p∑
j=1

βjXj + ϵ

interpretation of βj = how does changing Xj a�ect prediction?

Tests of H0 : βj = 0 are relative to the other features included.

9 / 52



Variable Importance as Added Information

�Does x1 contribute to predictive accuracy�?

Measure di�erence in test-set performance when training with
versus without X1.
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Dependence on Feature Set

Repeat with livingRooms removed, or with Square removed
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Look Out for Feature Distributions

livingRoom associated with Square ⇒ removing one transfers
�signal� to the other.

12 / 52



Shapley Values
What feature set to measure against? All of them!

Any ordering of features
Importance of Xj = change in test-accuracy when including it
versus those before it.
Average over orderings.
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Shapley Values

Shapley values average contributions to prediction, but can be
helpful to show spread.

SAGE: Shapley Additive Global importancE, to distinguish from
local SHAP values.
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Kernel Shapley Calculations
Shapley values motivated from co-operative game theory:

The most equitable way of sharing revenues among a

set of actors.

Original Shapley calculation = Monte Carlo average

But for any subset S ,
∑

j∈S ϕj = improvement in accuracy
from 0 to using XS .

Motivates least-squares criterion:

ϕ1, . . . , ϕp = argmin
∑ p − 1( p

|S|
)
|S |(p − |S |)

v(S)− ϕ0 −
∑
j∈S

ϕj

2

for v(S) = the �value� of S

Motivates sampling S at random, performing linear regression
on indicators I (j ∈ S).
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Permutation Importance
Rather than re-train, can we remove information from X1?

1 Permute the values of X·1 in the data set (relative to other
covariates) to get Xπ

·1.
2 Measure change in test-set accuracy on permuted data

VI1 =
1

n

n∑
i=1

L (Yi ,F (X
π
i1, . . . ,Xip))− L (Yi ,F (Xi1, . . . ,Xip))
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The Problem with Permutation
In a linear model y = β0 +

∑p
j=1 βjxj , VIj(F ) = 2β2j var(xj).

What if we simulate from a linear model, and train a random
forest to learn the linear model?
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Feature distributions again!
bathRoom and square correlated.

Permuting one creates combinations of 0 bathrooms in a huge
house or 4 bathrooms in something tiny.

F has no data near these combinations to tell it what to do.

Permutation importance tends to over-emphasize correlated
features (but di�erent reasons for di�erent learners)
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Tests and Variations

Alternatives to permutations

Conditional permutation:

X cj
i ∼ Xi |Xi,−j - simulate from conditional distribution

Measure
∑

L̃(Ỹi ,F (X̃i ))− L(Ỹi ,F (X̃
cj
i ))

Re-learn F πj(x) from permuted data, or F cj(x) with
conditional simulation. Measure Loss.

Under squared error

Target for F is E (Y |X )

Target for F d , F π, F c is E (Y |X·,−j)

but statistical properties vary.

See Uncertainty Quanti�cation for tests.
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But What Does the Feature Do?
De�ne Individual Conditional Expectation of xj for obs i by

ICEij(xj) = F (xj ,Xi ,−j)

and the Partial Dependence Function as the average
PDj(xj) = ICE·j(xj).

20 / 52



Feature Distributions Again

In linear models, PD and ICE plots should also be linear.

When derived from RF trained on linear model:
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Gradient Based Alternatives
Conditional distribution-based summaries designed to

focus on places we will want to make predictions

avoid extrapolation

but require a model for Xj |X−j .

How about using gradients instead?

VI∂ =
∑(

∂F

∂xj
(Xi )

)2

Accumulated Local E�ects re-integrate to get gradients

ALEj(xj) =

∫ xj

−∞

∫
∂F

∂xj
(x)dP(x|xj)dxj

In practice, done by discretising range of xj and often using �nite
di�erences.
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Speci�cs

For a generic, non-di�erentiable F

1 Divide range of xj into kj bins of with h with end points zlj ,
l = 1, . . . , kj .

2 Calculate the average �nite di�erence between bin-end points
over observations with xj in bin l

δFlj =
1

Nlj

∑
zlj<Xij<z(l+1)j

F (z(l+1)j ,Xi ,−j)− F (zlj ,Xi ,−j)

h

for Nlj =
∑

(zlj < Xij < z(l+1)j).

3 Now record integral and center

ALEj(xj) =
∑
zlj<xj

hδFlj
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Illustrated

Avoids extrapolation, need not recover additive e�ects.
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Comparison
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Does it Help with Extrapolation?

When we simulate from a linear model:
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Part II: Model Distillation

Instead of summarizing a model, approximate it with something you
can understand.

Obtain or generate feature examples (pseudo-data)

Black box �teacher� provides responses to be mimicked by
�student�

Why not just train the student using the original data?

Student may serve as approximation only

to aid understanding of large patterns
as an indicator of spurious behavior

Student may not perform well at data sizes available,
especially if it searches over structures.

We may want to di�erent distributions over features, eg to
localize.
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Generalized Additive Models

f (x) = f1(x1) + f2(x2) + . . .+ fp(xp)

�exible + visualisable univariate functions, but leaves out
interactions
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Generalized Additive Models

Distilling into GAMS avoids PD extrapolation issues
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Distilling Decision Trees

CART/C4.5 performs badly
because highly
variable/divides data

Distillation ⇒ generate as
much data as needed for
good performance

Handy explanation for
decision: last node before
leaf.
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Case Study II

Gibbons et. al., 2013, Zhou2 and Hooker, 2018

Psych questionnaires pose signi�cant response burden
(depression Q runs to 88 items)

Can we shorten for screening purposes?

Decision trees = sequence of questions.

Adaptive: not everyone sees the same items

But trees are pretty bad predictors!

Build random forest to predict depression based on 800
observations

Generate 12,000 new data points, build tree to predict random
forest.

Depth 5 trees = RF accuracy, sensitivity/speci�city > 0.8
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CAD-MDD Tree
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Distillation Reproducibility

RF trained with 3,000 points, trees distilled using 20,000 but still
get di�erent answers.
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When Does Reproducibility Matter?

Unstable distilled model may be ok if:

Student replaces teacher for prediction; e.g. for compression.

�Here is our formula� su�ces as an explanation.

Student is not re-distilled (or not frequently).

But may be problematic when:

Student model only used as approximation

Explanations are intended as justi�cations (usually based on
causal reasoning).

Explanations are intended to motivate actions.

Student is re-distilled frequently.

Uncertainty due to distillation not easily represented (eg
searches over structures).

Particularly problematic for local distillation.
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Part III: Local Explanations
Much of recent attention around individual predictions

Why was my loan not approved?

Designed to

Satisfy a �right to an explanation�

Provide recourse for adverse decisions

Provide a basis for disagreements (eg in treatment
recommendations)

Used as a surrogate for/alternative to global understanding.

Local/Global diagnostics can provide very di�erent information:

Global variable importance: What large-scale changes make

most di�erence across the data set?

Summaries of local explanations: What small-changes make

most di�erence to individual predictions?

But many of the same considerations apply.
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Local Interpretable Model-agnostic Explanations (LIME)

What features are most important ≈ derivative of prediction w.r.t.
xj , but

not all models are di�erentiable

derivatives can be unstable

large feature set = need to select a few to present

LIME builds a local LASSO model:

β =
Q∑

q=1

w(Xi ,Zq)
(
f (Zq)− β0 −

∑
βjZqj

)2
+ λ

p∑
j=1

|βj |

for Zq generated (or weighted) locally around Xi .

λ chosen to return 5 to 8 (tunable) features.
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Distillation Stability Again

LIME is a distillation method, but surely linear regression is pretty
stable? Let's use 1000 pseudo-examples.

Here we have applied LIME to the �rst point in the test set:

square livingRoom district6 district8 district10
0.00467 0.03950 -0.11350 0.07707 0.10783

We'll repeat the exercise but re-draw the 1000 pseudo-examples:

square livingRoom drawingRoom district6 district10
0.002760 0.06624 0.001653 -0.02000 0.001565

Distilling with enough data will stabilize, but sample sizes needed
are big.
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Local Explanations: SHAP
Rather than how predictions change with the value of a feature

How does knowing the value of a feature change the

prediction?

De�ne

fS(xS) =

∫
f (xS , x−S)µ(x−S |xS)dx−S

by integrating out the subset of features x−S .

Over the marginal distribution of x−S , independent of xS (see
PDj(x)).

Over the conditional distribution, estimated with a kernel
density

By re-learning to predict y from XS .

Examine change in prediction when adding xj to xS :

∆j
S(x) = fS∪j(xs∪j)− fS(xs)

and follow Shapley by averaging over sequence of features to add.
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SHAP to Explain Test Points
Di�erent integration operators:

∆j
S(x) over di�erent S :
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Local Explanations for Deep Learning: Saliency
Explanations require features to be individually meaningful.

Eg image data:
no pixel values are individually interpretable
but patterns of what in�uences prediction most might be.

Instead, consider local gradients ∇f (x)

In deep learning, �ts neatly into back-propagation.

(from https://christophm.github.io/interpretable-ml-book)
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With Attributions
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Variations on Gradients

Empirically:

saliency maps very unstable to perturbing x

can �nd imperceptible perturbations that signi�cantly change
explanation without changing classi�cation

SmoothGrad solution

Add noise to each pixel and calculate gradients

average over many realizations

Target = convolution
∫
∇f (x+ z)ϕσ(z)dz

Expensive + need to pick noise variance

Grad-CAM: focusses on convolutional layers, and thresholds by
direction towards a class of interest.
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Counterfactual Explanations

How could I change this decision?

If at x , �nd nearest x∗ so that

f (x∗) = desired outcome

x and x∗ are close

x − x∗ is sparse

(x∗ is realistic?)

But:

Challenging (model-speci�c) optimization

�close� = ??

But proposed as legal way to satisfy provision of recourse.
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Counterfactual Explanations

How do I get more than 300 for my apartment?
square drawingRoom kitchen bathRoom Type Time Cond ladderRatio

1: 105.8800 2.08373 1.000000 1.8945558 4 2008 3 0.333000

2: 128.0949 2.00000 1.000000 1.0000000 4 2008 1 0.333000

3: 124.7427 2.00000 1.000000 1.0000000 4 2008 1 0.333000

4: 210.0132 2.00000 1.020913 0.9969316 1 2008 3 0.343342

5: 105.8800 2.00000 1.000000 3.1720178 4 2013 4 0.333000

6: 118.6187 2.00000 1.000000 1.0000000 4 2008 3 0.333000
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From Local to Global

Most local explanations = some form of feature attribution

Some explicit: saliency/gradCAM, LIME, SHAP

Some less so:

Counterfactuals � feature di�erence with nearest positive class.
Anchors (local rules) � use a subset of features (could also
provide weights).

Framework: for each input x , f (x) also comes with attribution
A(x)

Summarize collection of A(Xi ) for global understanding.

Will use Shapley, LIME, Saliency (from �nite di�erences) for RF
trained on Beijing Housing Data for convenience.
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Variable Importance

Some summary of distribution:

Vj = EXS(Aj(X ))

estimated from training/test/uniform data.
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Global versus Local
Accumulating local models tells you what is important for each
local e�ect; can be di�erent from global importance:

f (x1, x2) = x1 + logit(10x2)

With, x1, x2 ∼ U[0, 1] x2 gradients mostly much smaller (3e-6 vs 1)
although mean squared gradient is still large (6 vs 1).

For most points, x2 makes little di�erence, but global variance is
large. 47 / 52



Relationships with Features
How do feature attributions change across feature space?

Build (interpretable?) model to predict importance of xj from other
features.

Partial dependence plots within regions of a tree.

Cluster explanations to select prototypes.
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Connections to Additivity

f (x) =
∑

gj(xj)

Most Aj(x) preserve some aspect of gj(x), and ignore gk(x).

(Especially if Xj ⊥ Xk)

⇒ (Xij ,Aj(Xi )) should be 1:1

Non-additivity measured by spread.
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Summary and Messages
Field fast moving, many proposals, not all thought-out

Warnings:
Feature dependencies make a di�erence
Beware of creating unreasonable feature combinations
Searching for structure produces instability

Simple checks:
Does this method give me what I ought to �nd if I start from a
known model? (Apply to both model and ML alg that has
tried to learn it).
Do I get the same answer if I re-run with a di�erent seed?
(Not always su�cient).

Questions of strategy
What do I want to know about this model? Does this
approach answer that?
Who is the audience for this explanation? Will they understand
what they are seeing? Do I want them to?

Happy Playing! But be careful.
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