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Abstract

This report provides proofs of some theorems appearing in [Ramsay et. al. 2007]
and also provides some of the calculations necessary to carry out the de-
scribed procedure.

1 Introduction

[Ramsay et. al. 2007] details a method of estimating parameters for ordinary
differential equations using smoothing spline technology. ODEs represent pro-
cesses that transforms a set of m input functions u(¢) into a set of d output
functions x(¢). Dynamic systems model output change directly by linking the
output derivatives x(t) to x(¢) itself, as well as to inputs u.

x(t) = f(x,u,t6), te[0,T). (1)

Vector @ contains any parameters defining the system whose values are not
known from experimental data, theoretical considerations or other sources of in-
formation. The task is then to estimate 6 from noisily observed data. In general,
we assume that only some subset of the components of x have been measured
and we denote the set of indices of these by Z with associated measurements y;
taken at times t;.

Unfortunately, explicit solutions to (1) are rarely available and must be ap-
proximated numerically. Moreover, the fitting surfaces tend to be very rough
and direct optimization methods tend to frequently find local minima. [Ramsay et. al. 2007]
attempts to ameliorate both these problems.

The approach in [Ramsay et. al. 2007] belongs in the family of collocation
methods that express the approximation Z; of x; in terms a basis function
expansion

K;
2i(t) =) etk (t) = cipi (1), (2)
k

; is chosen so as to ensure
enough flexibility to capture the variation in the approximated function z; and
its derivatives.

where the number K; of basis functions in vector ¢,



The task is now the joint estimation of ¢ and 6. This is done in a two-stage
process, in the inner optimization, the ¢ are chosen by minimizing the criterion

J(cl0,0,7) = = Ing(yilei, o) + P(%]6, X), 3)
zGI

where g; represents the likelihood for the observation y; given %;(t;) = c,¢;(t;)
and o; are (known) parameters defining g;. We take a nonlinear penalty

P(x|6,\) ZA /( (t) — f:(x]0, u)>2dt (4)

which explicitly controls the extent to which x may deviate from a solution to
(1). This gives ¢(0) as a function of @ which is then chosen to minimize:

0,0|\) = Zlng vilci(8),0;) (5)
iel

this is called the outer optimization. In practise, it is common to assume an
uncorrelated error structure for the y,, leading to the error sum of squares
criterion

9i(yil%i 00) = —willy; — &:(t)||*. (6)
For the purposes of this report, we will take A; = X to be constant so that
we can write

J(c|0,0,X) = 1(x) + AP(x]0)
with

H(0,0\) =1(x)

for some [ dependent on the data and o. This report examines the behavior of
our estimate of 8 as A is allowed to increase.

2 Theorems and Proofs

This section states and proves theorems appearing in [Ramsay et. al. 2007].
The essential import of these is that as A increases, the parameter estimates we
get tend to those that would have been gotten by optimizing exact solutions to
(1).

We will assume that solutions to the inner optimization problem exist and
are well defined, and therefore that there are objects x that satisfy P(x|@) = 0.



2.1 Preliminaries

The following theorem is a well-known consequence of the method of Lagrange
multipliers:

Theorem 2.1. Suppose that xx minimizes F(x) + AP(z), then xx minimizes
F(z) for z € {x : P(x) < P(xx)}. Moreover, for N > X, P(xx) < P(xy).

Two corollaries:
Corollary 2.1. For X' >\, F(xx) > F(zy).
Corollary 2.2. If 3z such that P(z) =0, then P(zy) — 0 as A — oo.

follow immediately.
The proofs of Theorems 2.3 and 2.4 rely heavily on the following:

Theorem 2.2. Let X and Y be metric spaces with X closed and bounded. Let
g(z,a) : X x Y — R be uniformly continuous in x and «, such that

z(a) = argmin g(z, @)
TEX

is well defined for each . Then z(a) : Y — X is continuous.
We begin with two lemmas:

Lemma 2.1. Let X be a closed and bounded metric space. Suppose that

x* = argmin g(z) (7)
reX

is well defined and g(x) is continuous. Then
Ve >0, 35 > 0 such that ||z — z*|| > e = f(x) — f(z¥) > 0.
holds for all x € X.

Proof. Assume that the the statement is not true. That is, for some ¢ > 0 we
can find a sequence x,, € X such that ||, —z*|| > € but ||g(x,) — g(z*)] < 1/n.
Since X is closed and bounded, it is compact and there exists a subsequence
Ty — ™ #£ x* for some z**. By the continuity of g, we have g(x**) = g(z*)
violating the assumption that (7) is well defined. O

Lemma 2.2. Let X and Y be metric spaces and g(z, ) : X xY — R be bounded
below and uniformly continuous in « and x, then j(a) = mingexg(x,a) is a
continuous function.

Proof. Assume j(a) is not continuous: that is, for some a € Y, Je > 0 such
that V6 > 0, 3’ with [o/ — o] < § and |j(a) — j(a/)] > €.

By the uniformity of g in « across x, we can choose §' > 0 so that |g(z, ) —
g(z,a/)| < €/3 for all x when |a — /| < ¢’. By assumption, we can find some
such o/ so that |j(a) — j(a')| > e. Without loss of generality, let j(a) < j().

Now, choose x € X so that g(z,a) < j(a) + €/3. Then g(z,o') < j(a) +
2¢/3 < j('), contradicting j(a') = mingery g(x, @). O



Using these, we can now prove Theorem 2.2:
Proof. Let € > 0, by Lemma 2.1 there exists 8’ > 0 such that
9(z,a) = g(z(a),a) <& = [lz — ()] <e

By Lemma 2.2, j(«) is continuous. Since g(x, ) is uniformly continuous , we
can choose ¢ so that

jar— o] <6 = |j(a) — j(a)| < &'/3 and Yz, |g(x,0) — g(a,a’)| < &'/3
giving
l9(2(a), @) — g(a(a’), )] < |g(@(a), a) — g(z(a’), o) + g(x(a’), ') = g(a(a’), )|
= [j(a) = j(a")] + |g(z(a/), o) — g(z(a'), o)

<d/3+4+4/3
<46
from which we conclude ||z(a) — z(a/)|| < e. O

2.2 The inner optimization
Theorem 2.3. Let A\, — oo and assume that

xj = argmin [(x) + Ay P(x|0)
Xe(Wwi)n

1s well defined and uniformly bounded over . Then xj converges to x* with
P(x*|0) = 0.

Proof. We first note that we can re-express xj as

xi = argmin (1 — ag)l(x) + a P(xx|0) (8)
Xe(Wi)n
where ay, = A\, /(1 4+ ) — 1.

By the continuity of point-wise evaluation in (W1)" [(x) is a continuous
functional of x and P(x|0) is similarly continuous. Since the xy, lie in a bounded
set X', we have that

I(x) < F* and P(x|0) < P*
for all x € X. Both I(x) and P(x|0) are bounded below by 0 and we note that
9(x, @) = (1 = a)l(x) + aP(x|0)

is uniformly bounded on C by 0 and F* 4+ P* and is therefore uniformly contin-
uous in o and x.
By Theorem 2.2,
x(a)) = argmin g(x, «)
Xxec
is a continuous function from (0,1) to (Wh)™. Since ||z(«)| is bounded by
assumption, it is uniformly continuous. Since «, — 1 is convergent, we must
have that x,, = x(a,) — x*. By the continuity of P(x|0), P(x*|6) = 0. O



Note that if it were possible to define x(«) as a continuous function on [0, 1], the
need for a bound on ||x(«)|| would be removed. However, since we do not expect
g(x,1) = P(x|€) to have a well-defined minimum, boundedness is required to
ensure that x(«) has a limit as o — 1.

We can now go further when P(x|0) is given by (4) by specifying that x*
is the solution of the differential equations (1) that is obtained by minimizing
squared error over the choice of initial conditions. To see this, we observe that,
provided solutions to (1) exist, they are uniquely specified by x(0) ([?]). Let

F= {X,P(X‘O) - O}a
then
li < mi .
i Hoen) < i 169
Since [ is a continuous functional on (W)™, and P(x*|@) = 0, we must have
[(x*) = min I(x).
(x) = min I(x)

By the assumption that the solutions to (8) are well defined and bounded, this
specifies a unique set of initial conditions x§ such that

x*(t) = f(x*,u,t|0).
with

x*(to) = x5-

2.3 The outer optimization

Theorem 2.4. Let X C (WH™ and © C RP be bounded. Let

xg , = argminl(x) + AP (x|0)
’ Xex

be well defined for each @ and X, define x*é to be such that

l(Xg) =

min  {(x)
X:P(x|0)=0

and let
0()\) = argminl(xg ,) and 0" = argminl(x*e)
06@ ’ 06@

also be well defined for each A\. Then

lim O()\) = 6*

A—00



Proof. The proof is very similar to that of Theorem 2.3. Setting o = A\/(1 + \)
9(x,,0) = (1 — a)l(x) + aP(x[0)

is uniformly continuous in «, 8 and x. As observed in Theorem 2.3, xg , can
be equivalently written as

xg , = argmin g(x, a, 6).
Xe(Wi)k

with aA/(1+X). By Theorem 2.2, xg , is continuous in € and a. On the set X,
therefore, I(x) is uniformly continuous in x and Xg ., is uniformly continuous
in 6 and . l(xg ,) is therefore uniformly continuous in 6 and a. Under the
assumption that @(«) is well defined for each «, we can now employ Theorem
2.2 again to give us that 6(a) is continuous in « and the boundedness of ©
provides uniform continuity.

Assume that ~
6 = lim 0(a) # 6"

and in particular ||@ — 8|| > e. From Lemma 2.1 there must exist a § > 0 such
that
l(xp-) <l(xg) — 0.

for all ||@ — 6"|| > €/2. Since 0(«) is uniformly continuous in «, there is some
a such that ||@(a) — 67| > ¢/2 for all & > a. Now by the uniform continuity of
l(xg ,) in a and 6, we can choose a; > a so that

Z(xe(a),a) — l(x:‘g) <4/3
for all @ > a1. By the same uniform continuity, we can choose o > a; so that

ll(xg- ) — l(xg-)] < /2
giving
Z(XO*,Q) < l(XG(a),a)

contradicting the definition of @(«). Finally, note that « is also uniformly
continuous in A and limy_ ., a(A) = 1. O

3 Matrix calculations for profiling

The calculations used throughout [Ramsay et. al. 2007] have been based on
matrices defined in terms of derivatives of J and H with respect to 8 and c.
In many cases, these matrices are non-trivial to calculate and expressions for
their entries are derived here. For these calculations, we have assumed that the
outer criterion, H is a straight-forward weighted sum of squared errors and only
depends on @ through x.



3.1 Inner optimization

Using a Gauss-Newton method, we require the derivative of the fit at each
observation point:

dxi(ti k)
SENR) & (¢,
dCZ‘ 'L(tz,k:)

where ®,(t; ) is the vector corresponding to the evaluation of all the basis
functions used to represent z; evaluated at ¢; ;. This gradient of z; with respect
to c; is zero.

A numerical quadrature rule allows the set of errors to be augmented with
the evaluation of the penalty at the quadrature points and weighted by the
quadrature rule:

(Nivg) "2 (di(tg) — fi(x(tq), ulty), 46))

Each of these then has derivative with respect to c;:

(Ai vq)1/2 (Zi(tg) — fi(x(tg),ulty),t410)) 1(i = j)DPi(ty)
- <Z(Aivq)1/2$ (Zi(tq) — fi(x(tq), u(tq),tq|0))> ®;(tq)
k=1 J

and the augmented errors and gradients can be used in a Gauss-Newton scheme.
I() is used as the indicator function of its argument.

3.2 Outer optimization

As in the inner optimization, in employing a Gauss-Newton scheme, we merely
need to write a gradient for the point-wise fit with respect to the parameters:
dX(ti,]c) o dx(ti,k) dc
@ dc do
where dx(t;)/dc has already be calculated and
de  [d2J]7" d%J
ae dc? dcd@

by the implicit function theorem.

Hessian matrix d?.J/dc? may be expressed as a block form, the (7, j)th block
corresponding to the cross-derivatives of the coefficients in the ith and jth com-
ponents of x. This block’s (p, ¢)th entry is given by:

(Z Pip(ti k) Pjq(tin) + A / ¢ip(t)¢jq(t)dt> I(i = j)
k

[ gutt) df’@q = [ 8al dflaqu()

d? f, . dfy dfy,
+ /d’z'p(t) [; Ak <d$id$j (fr — 2n(t) + dr, d%)] bjq(t)dt




with the integrals evaluated by numeric integration. The arguments to fx(x, u,t|0)
have been dropped in the interests of notational legibility.

We can similarly express the cross-derivatives d2.J/dcd@ as a block vector,
the ith block corresponding to the coefficients in the basis expansion for the ith
component of x. The pth entry of this block can now be expressed as:

df; - a*f . dfy df
[ Gt [ (e [k -+ ] ) oo

3.3 Estimating the variance of 0

The variance of the parameter estimates is calculated using
o __[dn)” en
dy | de*] dédy’

where

d*H  9*H (oe\' 0*H  9°H o¢ (o0e\'0°Hoe OH 9%
T T (ao) 9600 "~ 900c 00 (ao) 962 00 T 9é 097

and

(9)

d*H 0’H  0°H 0¢  0?°H 0¢ 0?H 0¢ e OH 0%¢
= tomcaa e T sz oo T Aaxapas - (10)
dfdy 000y 0cdy 00 000cdy  9¢° 0y 00~ O0¢ 000y

The formulas (9) and (10) for d>H /d6? and d>H /d@dy involve the terms d¢/dy,
0%¢/06? and 9%¢/00dy. In the following, we derive their analytical formulas by
the Implicit Function Theorem. We introduce the following convention, which
is caller Finstein Summation Notation. If a Latin index is repeated in a term,
then it is understood as a summation with respect to that index. For instance,
instead of the expression ZZ a;x;, we merely write a;x;.

oLy

ay

Similar as the deduction for d¢/df, we obtain the formula for 9¢/dy by
applying the Implicit Function Theorem:

Oy Oc? Ocdy

J . (11)

oc?
aeay
By taking the second derivative on both sides of the identity 0J(c|0,y)/0c|e =

0 with respect to 8 and vy, we derive:

d? 0J(cl8,y) 2%J(c|0,y) 3J(cl8,y)| 0e;
d@dyy oc ¢/ 0cofdyr | 0cdB0c; |& Oy
»#J(cl0,y)| 9¢ | 8J(c|8,y)| 9¢ 9  I*J(clb,y)| d%¢
0c20yy, |00 0c20c; | Oy, 00 dc? & 000y,
=0 (12)



Solving for azzaéy , we obtain the second derivative of ¢ with respect to 6
k

and yy:
9% [*(cl0,y)| 17 [9*T(clB,y) »#3J(cl,y)| 8¢
000y, Oc? é 0c000yy, ¢ 0c000c¢; |&Oyk
23 J(c|0,y)| 9¢  d3J(c|O,y) d¢; oe (13)
0c20yy, |00 0c20c; | Oy, 00
9%¢
® 50’

Similar to the deduction of 92¢/900yy, the second partial derivative of c
with respect to € and 6; is:

e 92J(cl,y)| 17" [03J(c|0,y) 3J(cl0,y)| 8¢

06000, { dc? J {acaeaej e 0cdBdc; |;00,

N »#J(cl0,y)| de  3J(c|0,y) aaiae] (14)
9c200; |00 ' 9c2de; |¢00; 06

When estimating ODE’s, we define J(c|0,y) as (3) and H(0,¢(0)]y) as (5), and
further write the above formulas in terms of the basis functions in ® and the
functions f on the right side of the differential equation. For instance, d?.J/dc?
is a block-diagonal matrix with the ith block being w;®;(t;)” ®;(t;) and d.J/dc
is a block vector containing blocs —w;®;(t;)T (y; — z:(t;)).

The three-dimensional array 93.J/9cdc,dc, can be written in the same block
vector form as 92.J/0c00 with the uth entry of the kth block given by

- d*f,  dfy d*f, dfy f dfi
/ (Z P R e de Oin(1)0sa1) v (D1l
d3
o0 (s = 509 ) et

d2f1 2f7 .
Y / dudin = Oip(1)05g (D oku(t)dt — A / QLA QLA 0L

& fy .
A / dz;dz, Dip(t)Pjq(t) Pru(t)dt

assuming c, is a coefficient in the basis representation of z; and ¢, a corresponds
to zj. The array 9°J/9cd0;00; is also expressed in the same block form with
entry p in the kth block being:

- *fi dfi ae2f df,  d2f, df
/(ZAZ [d‘gid9‘dﬂck+d9ida:kd9j+d9jdxk dﬁj Drp(t)dt

/ Z (dxjdgkdﬁ (fi - ()))% [ a0




93.J/9cdc,00; is in the same block from, with the gth entry of the jth block
being:

i d?f, dfi d?f, dfy d?f, dfy
/ (lz_: A {d@ dzj dry, * df;dzy, dz; " drjdry sz}> Pro(1)sq (1)
-/ Z/\ (st — a1e))) onsttrosatra
'\ Gy daeag; R

d? a2 .
A /de C{; Bjqlt )¢k:p(t)dt—)\k/d9 CJ;‘“ Biq(t)Prp(t)dt

where ¢, corresponds to the basis representation of zj.
Similar calculations give matrix d2H/d@dy explicitly as:

de 0*’H n O*H @
do |0¢dy  0c? dy
_oH [9H]T Z e, 9T de, i 9J  de,
~ dc | 0c® de 6cacpacq dy = « 0cdcy00 dy
with dé/dy given by
[
Oc? Ocdy
and §%.J/0cdy being block diagonal with the ith block containing w;®;(t;).
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