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Abstract

The subject of this thesis is the interaction between the problems of diagnostics

and extrapolation in machine learning.

I present a suite of tools for understanding high dimensional prediction functions

that are based on the Functional ANOVA decomposition and argue that these are

optimal in an idealized setting. I then show that they can be distorted to an arbitrary

extent if the predictor space contains large regions of extrapolation.

This thesis gives a criterion of extrapolation and details tree-based methods to

evaluate it. This methodology provides a comprehensible representation of the dis-

tribution of training data and a diagnostic for functional behavior in regions of low

data density. I then discuss the issue of making predictions at points of extrapolation.

I suggest a strategy for stabilizing a general learning algorithm away from training

data that is motivated by a Bayesian heuristic not unlike ridge regression and which

bears some resemblance to Kriging.

Finally, I advocate a modification to the Functional ANOVA that uses this es-

timate to avoid the effects of bad extrapolation while retaining many of the useful

properties of the decomposition.

All the ideas in this work are designed to be fully general and compatible with

any machine learning algorithm.
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Chapter 1

Introduction

The rise of computational power in the past few decades has lead to a huge increase

in the sophistication of mathematical models that are used to describe data. This

has been enabled not only by the speed and memory increases that allow much more

complicated search strategies but also by the massive increase in the amount and

complexity of stored data. Automated data collection has allowed many private and

public sources to accumulate data warehouses containing thousands and sometimes

millions of records each made up of tens to thousands of measurements. This data

complexity has necessitated the development new statistical techniques for modeling

and describing data, a task which has largely been undertaken under the moniker of

machine learning.

One of the central concerns that machine learning has is in making predictions.

The goal is to build a mathematical model to predict responses on future data based

on some measured predictors. Assume that we have a d-dimensional predictor vector:

x = (x{1}, . . . , x{d})

for which there is a response:

1



CHAPTER 1. INTRODUCTION 2

y = f(x) + ε

for some unknown function f and a random component ε distributed according to

some distribution P (ε). “Good” prediction then makes some loss criteria L(ŷ, y) – the

loss from predicting ŷ if the truth turns out to be y – small. The optimal predictive

function is

F (x) = argmin
G(x)

Ey,xL(G(x), y). (1.1)

Typically, L is designed to correspond to P (ε) so that F (x) = f(x), but this is not

necessary. This model can be employed in a regression setting, with F (x) being real

valued and ε typically assumed to be normally distributed. It also fits a classification

setting, with F (x) giving a class label and ε multinomially distributed. This thesis

is primarily concerned with the regression problem. I provide a cursory overview of

techniques to extend these techniques to classification.

The problem posed by machine learning is then to develop an estimate of F . We

are given access to a data set

D = {xi,1, . . . , xi,d, yi}Ni=1

of training examples and are asked to provide a function that has good predictive

accuracy on future examples. A host of methods have been suggested for both the

classification and regression problems, each with their own particular model assump-

tions and methods for optimizing (1.1). There is a large body of on-going research

into this problem and the many issues it entails. This thesis, as much as is possi-

ble, takes a generalist approach and tries to avoid discussion of the technicalities of

specific methods beyond the properties listed below as holding across a large body of

research.
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The focus of the larger part of research in machine learning has been in developing

flexible models for learning such prediction functions. Being a universal approximator

- able to approximate any reasonable function arbitrarily well - is usually regarded

as a desirable property for a learning methodology. This approach makes good sense

in a setting where very little is known about system dynamics; placing constraints

on the set of prediction functions without prior knowledge that these are reasonable

can produce functions that perform very poorly when the true target badly violates

those constraints.

There are two negative consequences of this flexibility with which this thesis is

concerned. These are in the areas of interpretation and extrapolation. Both of these

are secondary concerns when the central criterion for success is predictive accuracy.

Nonetheless, for real-world applications both can be important. We naturally desire

to understand a system, and doing so may allow us to produce better models for it.

Moreover, while extrapolation may seem irrelevant for predictive accuracy on well

behaved data, in practice delinquency is common in real-world data and there are

times when we deliberately wish to evaluate a function at points of extrapolation.

Diagnostics

Once machine learning has been employed in a prediction task, and a prediction

function has been produced and performs satisfactorily, a natural question to ask is

“What is it doing?” Understanding the dynamics of systems is, after all, the central

purpose of science and fundamental to human curiosity. There are also good prac-

tical reasons for desiring interpretation. Firstly, interpretation represents a check on

system dynamics, or our intuition - does what this function is doing look reasonable?

If not, either our intuition or the function need to be changed. Secondly, it allows us

to understand specific predictions - banks, for instance, are required to give reasons

for rejecting loan applications. Finally, gaining an understanding of the dynamics of
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a system may allow us to design better models for it and improve predictive accuracy.

Few of the procedures that have been suggested in the machine learning literature

provide predictor functions that are readily understandable. There are some which

purport to provide aids to understanding. Tree-based methods have a diagrammatic

representation that can be easily followed. Neural Networks also have a graphical

representation, although this is harder to interpret. Many other methods; nearest

neighbors, radial basis functions and Support Vector Machines, for example, do not

provide diagnostic insight. Moreover, the diagnostic tools for both trees and neural

networks are highly variable under perturbations of the training data, making inter-

pretation based on them problematic [2]. Interpretation also becomes more difficult

as both tree glyphs and Neural Network diagrams become more complicated. En-

semble methods are often used in conjunction with trees (c.f. [10], [2] and [8]), and

while these do often increase predictive accuracy, they lose the interpretability of the

single glyph.

While it may be possible to tailor diagnostic tools for specific models, this work is

concerned with the problem of making predictions for a general “black box” function.

I assume that we know nothing about the structure of this function, but are given

access to the data that was used to train it, and that for any point of predictor

space, we can request the output of the function at that point. I am interested in a

geometric interpretation of the function in terms of predictor variables. It is natural

to ask which predictors make a large difference in the values of the prediction. We

also want to know what that difference looks like as the predictor is changed. Such

first order statistics effectively treat the function in question as being additive, and

it is worth asking the same questions for pairs, triples and higher combinations of

variables.

The most common tool for providing these diagnostics is the Functional ANOVA

decomposition, first introduced in [16]. The display of functional components based

on the Functional ANOVA has already been developed in [28] and [17]. We may
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also be interested in evaluating the importance of these components in providing a

good approximation to a prediction function. This has been the subject of part of

the research in this thesis and I present a measure of importance and argue that it is

natural in these circumstances. These diagnostics must be efficiently calculable and

I give a method for doing this and graphical displays of the results.

Extrapolation

The second problem that this thesis addresses is that of extrapolation. Extrap-

olation occurs when predictions are made at points which are far away from known

examples in predictor space. This is not likely to occur in a well-behaved low dimen-

sional setting. However, in a machine learning context, extrapolation can be relatively

common. A first reason for this is is simply dimensionality – typically, the number of

points required to cover a region increases exponentially with the dimension of that

region, so that data can become very sparse as the number of predictors increases.

In a real world context, training data sets are also very rarely representative of

the distribution of future data. To begin with, the systems that generate such data

are rarely static and the general distribution of the predictor variables can shift;

income shifting with inflation is an example of this, more general sociological trends

– type of employment, number of children and so forth – can also be evident. Often,

the set of predictor variables contain measurements under the control of the agency

doing the data mining. In previous data sets these have been chosen in an a priori

manner based on predictors which the agency can’t control. The purpose of the

data mining, however, may precisely be to optimize over a set of actions that can be

taken, including those not previously tried for the current example. This amounts

to deliberately making evaluations at points of extrapolation. Finally, typographical

errors and mistakes are common in many data sets and can result in points that are,

mistakenly, far away from any known data point.
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A first issue, therefore, is to be able to diagnose points of extrapolation. This

diagnosis can then be put to various uses. An increasing amount of extrapolation,

for example, can provide an indication of concept drift and may suggest that a model

may need to be re-trained. Points at extrapolation can also be classified as such and

given a “don’t know” label, or at least a low confidence score. These might warrant

further investigation to detect errors in the data set. In this thesis, I develop a tree-

based method that has the additional advantage of providing a graphical description

of the distribution of the data and a diagnostic tool for investigating the behavior of

a prediction function at points of extrapolation.

Making predictions at points of extrapolation is a problem when flexible predictors

are used. Philosophically, a flexible approximator has few model assumptions and we

therefore have no reason to believe the predictions that it makes when not influenced

by data. Far away from data points, the predictions made by such methods are

influenced more by the particular details of their learning scheme than by the training

data and this can lead to a number of consequences. The first of these is that for

models that do not extrapolate as constants, it is possible to make predictions that are

very different from the responses in the training data, even at superficially reasonable

places. The second is that these predictions, even when reasonable, can be highly

variable under perturbations of the training data. This also decreases the trust that

should be put on predictions in those regions.

There are occasions when it is necessary to make predictions at points of extrapo-

lation. This is the case, for example, in the commercial settings mentioned above, and

particularly when a choice of actions is available, some of which are extrapolatory.

I present a heuristic that suggests that predictions should be shrunk toward a sta-

ble null model which gives reasonable, if not very accurate, predictions everywhere.

The simplest of these is a constant which I argue is the most natural model. More

complicated models can be used, however, if more prior information is available – for

example, if we know that a response should be monotone increasing with some value
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of the predictor variable. This shrinkage has the benefit of both ensuring that rea-

sonable predictions are made and of stabilizing predictions at points of extrapolation.

I show that this shrinkage can be achieved with any machine learning algorithm by

adding data to influence it toward our chosen base model.

Interactions

Extrapolation is of particular importance for diagnostics, although the connection

between these two has largely been overlooked. The Functional ANOVA, along with

most other diagnostic tools, ignores the distribution of the training data. The Func-

tional ANOVA is itself defined specifically for a product measure that fills the range1

of the distribution with points even when much of that space is empty of training

points.

If we are cautious about making predictions in regions of low data density, we

should be even more concerned about allowing predictions in those places to influence

our diagnostics. We are, after all, interested in understanding the dynamics of the

system that is being modeled and using predictions at extrapolation distorts this with

artifacts from the specific modeling procedure used. Indeed, I show that it is possible

to produce arbitrary distortion of ANOVA-based diagnostic tools in realistic settings.

The final concern of this thesis is a generalization of the Functional ANOVA to

non-product measures. I show that this can be achieved while losing relatively few of

the desirable properties of that decomposition, and none that are important for the

purposes of machine learning diagnostics. Once the Functional ANOVA can be made

to accept a general weight function, we can restrict the calculation of functional effects

away from regions of extrapolation and (hopefully) achieve a more realistic picture

of system dynamics. The formulation I give for this new decomposition makes it

1“Range” is used in a multi-dimensional setting throughout this thesis to denote the hypercube
bounding the data.
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challenging to estimate and I suggest novel methods to do this. Using these estimates,

all the diagnostic tools developed and expounded in the earlier parts of the thesis can

then be employed while avoiding evaluating the function at points of extrapolation.

Summary of Thesis

This thesis follows the structure broadly outlined in this introduction. I begin

by reviewing existing work on diagnostics in Chapter 2. I specifically focus on an

exposition of the Functional ANOVA, its uses in providing displays of effects and

some variations on it that exist in the literature. Chapter 3 extends displays of

Functional ANOVA components to an evaluation of their importance and present a

graphical aid to understanding these scores. I argue that the importance scores I

propose are the natural ones to use in this context and I present an efficient method

for producing a graphical description of the ANOVA structure of a generic black box

function.

Chapter 4 shift the focus to extrapolation. I describe the problem of extrapolation

and the repercussions of ignoring the issue. I also show that extrapolation can severely

distort the interpretational diagnostics developed in Chapters 2 and 3. In order to

combat this problem, Chapter 5 presents a diagnostic of extrapolation, which can be

thought of as an outlier-detection device. This is based on trees and I take advantage

of the tree glyph to explore the extent of bad extrapolation in a function. Chapter

6 is concerned with the problem of making predictions at points of extrapolation. I

propose a shrinkage of predicted values that is proportional to the data density at

the point of prediction. I show how this can be implemented stochastically with any

machine learning algorithm that takes observation weights.

The interaction between diagnostics and extrapolation is the subject of Chapter

7. Here I propose a generalization of the Functional ANOVA, hitherto defined only

on product measures. I present a list of desirable properties for functional effects
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and show that this generalized Functional ANOVA provides them. Estimating such

generalized effects is non-trivial and I introduce a novel estimation technique. This

generalized decomposition can then be employed to provide versions of the displays

and diagnostics from Chapters 2 and 3 that are robust to bad extrapolation. Chapter 8

provides an over-view of the work, as yet unanswered questions and further directions

in research.



Chapter 2

Diagnostics and the

Functional ANOVA

The first aim of this thesis is to develop diagnostic tools to aid us in understanding

the behavior of a high dimensional function. Many machine learning procedures

produce functions which cannot be written down as a readily understandable formula;

any algebraic representation of the function involves too many terms of too high

dimensionality to gain an intuitive understanding of how predictions change with the

values of the predictors. This situation is referred to as having a “black box” - a

function which takes inputs and produces an output without an explanation of how it

arrives at them. It is therefore desirable to have some alternative avenue in which to

gain insight into functional behavior: an x-ray of the black box. Graphical displays

of various sorts have been the most popular and effective diagnostic tools – not least

because they cater to the mathematically less-inclined – a direction which I maintain

in this work.

This thesis focuses on the problem of prediction and understanding a high dimen-

sional function that is the result of a learning algorithm. However, there are other

situations in which we may seek to understand complex, high-dimensional functions.

10
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Likelihood functions for complex probability models are such a case. In this setting

the data are fixed, but there is a high dimensional set of parameters and we wish to

understand the behavior of the likelihood as those parameters change. Other situa-

tions include complicated simulations in engineering or physical problems when there

are a large set of input variables and no close-form for the answer. For these meth-

ods, there is no training data. In this case, we can simulate the uniform distribution

normally associated with the Functional ANOVA. This thesis contributes measures

of interaction importance and displays for them in Chapter 3. There is no variance

associated with the function, however, and variability at extrapolation is no longer

an issue. The concerns of the remainder of the thesis are therefore irrelevant in such

situations.

2.1 Specific Methods and Diagnostics

A number of machine learning tools do come with diagnostic aids of more or less

effectiveness. I devote this section to exploring some specific methods and inter-

pretability as a means of identifying the important properties of a good diagnostic

tool.

2.1.1 Tree-Based Methods

The most obviously and successfully interpretable methods in machine learning

have been trees. There are two main interpretational tools available here. The first of

these is the tree glyph, demonstrated in Figure 2.1. This tree was learned to predict

the median house price in a suburb of Boston dependent on measured demographic

variables in the Boston Housing Data [12], which will be the practical example used

throughout this thesis. The glyph takes the form of a graphical model: the nodes
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represent decisions and decision boundaries with edges leading to subordinate de-

cisions. This representation is immediately appealing in providing a direct method

to manually make predictions; the order of variables appearing in splits provides a

notion of variable importance and specific predictions can easily be explained by the

sequence of decisions.

An alternative approach to understanding trees is as a set of rules. This is taken in

[24]. The set of decisions leading to each prediction forms a rule which can be written

down and the rule set can then be examined. Although requiring more intellectual

labor, this logician’s method can be useful in presenting regions of constant prediction,

particularly for small trees. A list of rules, however, does not provide a easy indication

of how predictions change as one or more of the predictors is altered.

Both the tree-glyph and rule sets become more difficult to interpret as trees get

larger and hence more flexible. A tree of a hundred levels, with possibly thousands of

leaves induces more rules than can be readily understood. Tree-glyphs also quickly

get unreasonably large to be followed or viewed. Even very large trees do retain the

advantage of being able to specify how much predictors change in order to reach a

desired result. This capability has been of particular use by credit card companies

who must show cause for such decisions as denying an application.

2.1.2 Neural Networks

Neural Networks are another commonly used machine learning technique, and

these also have a glyph to represent network structure. The glyph again takes the form

of a graphical model, weights on each edge specifying the coefficients of linear terms

within the model, and nodes sigmoid functions that “squash” the linear combination

coming into them. Figure 2.2 provides an example of a 13-2-1 neural network trained

on the same Boston Housing Data.

Neural networks have achieved popularity due to an analogy with the structure
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Figure 2.1: A tree learned on the Boston Housing Data.

of the human brain, which the glyph helps to emphasize. In this case the glyph

represents considerably more complicated dynamics than those implied by the repre-

sentation of trees. It is more difficult to use the weights on edges to examine behavior.

Nonetheless, contemplating Figure 2.2 it is possible to see that the second hidden node

takes a linear combination of variables with much larger weights on predictors “in-

dus,” “age,” “b” and “lstat”, providing most of the alteration in the prediction as

values are changed and acting, for the most part, like a Generalized Linear Model.

As with trees, the interpretability of neural networks decreases rapidly as the size

of the network increases. Having hundreds of hidden layers induces thousands of

weights which are difficult to keep track of mentally. As with trees, small networks

put large restrictions on the flexibility of the resulting models, restricting the class of

functions that can be approximated well.
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Figure 2.2: A 13-2-1 neural network fit to the Boston Housing Data. Weights for
each input are given to the left of the input node in order of the hidden layer nodes.

2.1.3 Less Interpretable Methods

There are numerous other models and methodologies that do not have immediate

graphical diagnostic tools. The general set of kernel methods, including support

vector machines and nearest neighbors are among these. These methods produce an

estimate of the form

N∑
i=1

βiK(x, xi; αi)

for some “kernel” function K(·, ·; α). Even the most direct of these are difficult to

interpret in high dimensions, although they can be imagined in bivariate situations as

adding a “bump” centered on each data point xi. Even for a relatively small number

of kernel centers – support vector machines provide a sparse representation of the

function – such functions are not readily interpretable in high dimensional space.

Ensemble methods are another area of machine learning in which interpretation
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becomes difficult. Ensembles have most frequently been used to provide additive

combinations of trees. Taking a linear combination of hundreds of trees, even small

trees, effectively destroys the interpretability of the tree glyph and creates far too

many rules to be manageable.

These methods are some of the best-performing models in the machine learning

literature in terms of predictive accuracy. The work in this thesis is aimed at a general

approach precisely to provide a set of diagnostic tools compatible with any black box

function, including those just listed.

2.1.4 Structured Models and Interpretation

Interpretation does become easier in situations where more structure is imposed

upon the model, although this comes at the expense of flexibility1. Two common

approaches to restricting the flexibility of the model class which result in improved

diagnostic understanding are Generalized Linear Models [20] and Generalized Addi-

tive Models [13]. We will examine these as providing an indication of the type of

information that we would like to glean from a general function.

Generalized Linear Models

The interpretability of Generalized Linear Models comes from the algebraic for-

mulation that is lacking in more flexible machine learning models. In this case the

model can be written in the form

g(
d∑

i=1

βix{i})

for a known, usually monotone increasing, function g. The βi (suitably scaled to

reflect the variance of x{i}) then provide the relative importance of each predictor

1This restriction can also result in improved accuracy through regularization and is often the
main motivation for it. This will not be our concern for diagnostic purposes, however
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and the behavior of the resulting prediction as x{i} varies depends only on the shape

of g and the magnitude and sign of βi.

That view is somewhat simplistic. While it is true that a larger coefficient equates

to a steeper prediction for a standard linear model, the shaping function g can have

a strong effect on the over-all diagnostic. If logistic regression is used to classify well-

separated classes, for example, a very large value of β can actually translate into a

prediction function that is close to flat where data are observed, even though it will

be precipitous in the vicinity of the class boundary.

Diagnostics also become more difficult when interaction terms are included in the

model. This can be done to provide more flexibility. Including sets of terms

d∑
i=1

d∑
j=1

γijx{i}x{j}

along with the linear terms above results in “quadratic regression”, used as an example

in Chapter 6. Here the γij represent coefficients of an interaction and their relative

sizes indicate the importance of each. They do, however, confuse the way in which

the prediction function varies with a single predictor.

Generalized Additive Models

An alternative method in which interpretability comes with a restricted model

class is in the realm of additive models. Here the prediction function is given as

d∑
i=1

fi(x{i})

for unknown functions f which must be estimated. Since each effect fi is univariate,

however, they can each be plotted; for example in Figure 2.3. In this case such a set

of d plots captures all the behavior of the function.
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Figure 2.3: The effects for “dis” and “lstat” of a Generalized Additive Model built
on the Boston Housing Data.

Second order effects in the form of terms fij(x{i}, x{j}) are the natural generaliza-

tion of interaction terms for Generalized Linear Models. These can also be viewed

in contour or mesh plots, although they do not have an immediate importance score

attached them. Higher order interactions can be included in GAM models, but are

more difficult to understand.

2.2 The Functional ANOVA

The development of displays for more structured methods, particularly those in

§2.1.4 points toward the approach of this thesis. While defining a “reason” for a given

prediction is restricted to trees, all diagnostic tools try to explain the behavior of a

function as some given predictor, or predictors vary. This thesis targets a general

diagnostic tool that can accompany any predictive function, and I concentrate on

developing a GAM-like representation. This will shift the focus somewhat away from

the interpretational tools above. The interpretation of GLMs and neural networks

is most easily thought of as examining the behavior of a function with the other
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variables fixed. Instead, this work focuses on how a function changes in aggregate

with a particular predictor or set of predictors. The central tool used to do this has

been the Functional ANOVA.

The Functional ANOVA decomposition has been studied in many contexts and

appears in the literature as far back as [16]. Modern applications have been in the

study of Quasi Monte Carlo methods for integration [22] and functional data analysis

[27]. It has been used more directly in a machine learning context in, for example, [31]

for fitting additive models of low dimensional components, an approach also followed

in [15]. [28] provides an account of the use of the standard Functional ANOVA for

the visualization of high-dimensional functions.

The standard definition of the decomposition is given as follows. Let F (x) :

[0, 1]d → R be square integrable. For u ⊆ {1, . . . , d}, denote by xu the subset of

variables whose indeces are in u. Similarly x−u indicates the variables with indeces

not in u. F (x) can be written uniquely as

F (x) =
∑

u⊆{1,...,d}

fu(x)

with fu depending only on xu. {u ⊆ {1, . . . , d}} denotes the set of all subsets of

{1, . . . , d}, so that in more comprehensible terms, this is a mean (u = φ), plus first

order effects (u = {i}), plus second order effects and so on. To make such a decom-

position unique, each effect fu is defined as

fu(x) =

∫
x−u

(
F (x)−

∑
v⊂u

fv(x)

)
dx−u,

the projection of F onto the variables xu minus all the lower order effects. A number

of properties result from this definition. Firstly, for each effect fu and each i ∈ u and

each xu\i
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∫
fu(x{i}, xu\i)dx{i} = 0; (2.1)

the effects integrate to zero in each co-ordinate direction for every value of the other

predictors.

This gives us, secondly, that the fu belong to orthogonal subspaces under the

usual inner product with a uniform measure.

Orthogonality, in turn provides the third property: that the function variance

(σ2(f) =
∫

f 2dx with σ2
φ = 0) may be decomposed as

σ2(F ) =
∑

u⊆{1,...,d}

σ2
u(fu). (2.2)

Particularly, if F is additive2 in some set of variables u, then fu(xu) = 0 must hold

and F is recovered exactly with the smallest possible number of terms. Note that the

definition can be generalized trivially to any product measure.

2.2.1 Plotting Low-Order Effects

The Functional ANOVA provides an ideal tool in which to identify the “effect” of

a predictor, or set of predictors. The quantity

∑
v⊆u

fv(xv)

represents the aggregate behavior of F on xu, averaged over x−u. Moreover, this

quantity represents the L2 projection of F onto xu making it optimal in the sense of

being as close to F as any function that only makes use of xu.

This decomposition was used in [17] and [28] to provide bivariate plots of functional

dependence. Here, the plot given for the effect of xu would be

2I employ the term additive in u to indicate that F can be written as
∑q

i=1 fvi
(xvi

) with no
v ⊇ u.
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Fu(xu) =
∑
v⊆u

fv(xv),

the direct projection of F onto the subspace of predictors xu.

Plots of bivariate and univariate dependence can then be plotted together in a

“full grid of plots” - a strategy advocated in [28]. Univariate effects and Normal

theory confidence intervals are given as plots on the diagonal of a grid, with off-

diagonal elements being filled with the corresponding bivariate effects. Since there

are two available positions for each bivariate effect, the lower triangle can be used

to give the variance of the whole prediction function at each point of the bivariate

space. Formally, in the ijth element of the grid, for each value of x{i} and x{j} the

plot provides

Var(F (x)|x{i}, x{j}).

the univariate version of which is used for the confidence intervals in the plots on the

diagonal.

The use of this variance is two-fold. It describes how much variance is not being

captured by the effect fij. It is also an indication of model structure - a constant

variance implies that

F (x) = f{i,j}(x{i}, x{j}) + f{1,...,d}\{i,j}(x{1,...,d}\{i,j}).

In other words, fij is an additive component of F . Figure 2.4 provides a subset of

the “full grid of plots,” using the predictors “lstat” and “dis”.
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Figure 2.4: Matrix of plots of effects for a regression Support Vector Machine trained
on the Boston Housing Data. The effects for “dis” and “lstat” are plotted in the diag-
onal elements. The upper diagonal provides the bivariate effect and the lower diagonal
the functional variance conditioned on the bivariate values of the two predictors.

2.3 Partial Dependence Plots

A variation on the Functional ANOVA effects that provides less probability dis-

tortion is the Partial Dependence Plot. This is described in [10] for ensembles of

trees, although the same techniques were employed for kernel methods in [18]. [10]

defines the partial dependence of a function F (x) on xu to be

Fu(xu) = Ex−uF (x) =

∫
F (xu, x−u)dP−u(x−u) (2.3)

where P−u(x−u) is the marginal distribution of x−u. Both [10] and [18] note that this
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estimate recovers additive or multiplicative components up to constants. That is for

F (x) = f(xu) + g(x−u), (2.3) returns f(xu) + c, and for F (x) = f(xu)g(x−u), it gives

cf(xu).

This comes at the expense of distorting the distribution of predictor variables.

(2.3) makes the implicit assumption that there is a product distribution between xu

and x−u, in the sense that it satisfies the optimality criterion

fu(xu) = argmin
g∈L2(Ru)

∫
(g(xu)− F (x))2 dPu(xu)dP−u(x−u)

In the framework of taking projections, however, there is a sense in which this is the

best we can do.

Theorem 2.3.1. Among all distributions Q(x) such that

argmin
g∈L2(Ru)

∫
(g(xu)− F (x))2 dQ(x) (2.4)

recovers hu(xu) for all functions of the form hu(xu) + h−u(x−u), Pu(xu)P−u(x−u) has

the smallest Kullback-Leibler divergence from the true distribution P (x).

Proof. To begin with, note that among all functions of the form Qu(xu)Q−u(x−u), the

product of marginals, Pu(xu)P−u(x−u), has the smallest Kullback-Leibler divergence

from P (x). This is a trivial generalization of the standard theorem that the closest

product distribution to P (x) is the product of its marginals [14].

Supposing Q(x) cannot be written as a product distribution on xu and x−u, the

solution to (2.4) is

∫
(F (xu)− g(x−u)) dP (x−u|xu)

and since P (x−u|xu) is by assumption not constant in xu, a function g(x−u) can be

found such that
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g′(xu) =

∫
g(x−u)dP (x−u|xu)

is also non-constant. This can be constructed directly: for some y−u, P (y−u|xu) is

not constant. Letting g(x−u) = δy−u(x−u), g′(xu) = P (y−u|xu) 6= c3. Q(x) must

therefore be a product measure in xu and x−u and the closest of these to P (x) is

Pu(xu)P−u(x−u).

[10] provides an efficient algorithm for producing plots of these functions for en-

sembles of trees. A data-driven approximation can be produced for any black box

function F by calculating

F̂u(xu) =
1

N

N∑
i=1

F (xu, xi,−u) (2.5)

where {xi}Ni=1 is the sample used to learn F . The set {F (xu, xi,−u)}Ni=1 can also be

used to calculate an empirical variance for confidence intervals. Figure 2.5 is the

equivalent to Figure 2.4 using Partial Dependence Plots. Some differences can be

seen: a slight shift in the location of the mode leading to a considerable alteration in

the effect for “dis”.

2.4 Classification Diagnostics

The diagnostic tools in this chapter have dealt with regression problems. For two-

class classification, the same diagnostics can be given, interpreted as an estimation

of the classification probability surface. For multiclass classification, the straight-

forward approach to plotting effects is to simply plot an effect for each P (Ci|x), the

probability of class Ci given x. Given K classes, there are K plots for each effect.

3g(s−u) is not strictly in L2(Ru), but with some continuity constraints on P (x−u|xu), g can be
taken to be the indicator of a small interval around y−u.
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Figure 2.5: Partial Dependence Plots for a regression Support Vector Machine trained
on the Boston Housing Data.

This can become unwieldy for large K, in which case plots can be given only for

common or important classes.

The importance scores introduced in Chapter 2 can also be given on a class by

class basis. If an over-all score is required for effect u, the natural measure to give is

K∑
i=1

P (Ci)Impi(u)

where Impi is the importance score for u for the function P (Ci|x). These are summed

over classes, weighted by the prior probability of each class.
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2.5 Degree of Explanation

So far the Functional ANOVA, and variants on it, have been used to provide plots

of low order functional effects. A remaining question is “How much explanatory power

do these effects have?” The variance decomposition (2.2) provides a quantification

of the amount of variance explained by each effect, although this does not extend

easily to Partial Dependence Plots. [30] proposes a number of measures of effect

importance based on the quantities σ2
u. [10] has alternative importance measures.

Neither of these are targeted at providing a measure of how much of the over-all

functional behavior has been recovered. Neither provides a measure for a set of plots

taken in combination. This is the task of the next chapter.



Chapter 3

Variable Interaction Networks

In attempting to visualize the black boxes that result from machine learning,

we are restricted to examining low dimensional behavior. It is possible to present

contours of a function in at most three dimensions, and only bivariate contours can

be examined without considerable intellectual effort. These may provide a good

description of functional behavior. However, they do not provide an indication of

how important each component is. If the function is truly high dimensional, they

may also provide a quite misleading picture of dynamics.

The diagnostic tools presented here also have a limiting function. Chapter 2 pre-

sented the approach of the “full grid of plots” for black box predictions: producing a

matrix of bivariate plots, each describing aggregate behavior on two of the predictors.

These are complemented with plots of conditional variance: how much functional vari-

ation is not being accounted for at each value of those two predictors. I regard this as

being a useful diagnostic aid on which to build. If the function in question is additive

up to first order interactions, then such a plot-matrix exactly captures its dynam-

ics: one only needs to sum up the values of the plots, a relatively simple cognitive

procedure. Plots of bivariate conditional variances may indicate where something in-

trinsically higher-dimensional is going on, but they do not indicate what variables to

26
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look for as additional interactions, or indeed how many variables might be included

in this interaction. The work that I present here solves this problem.

In keeping with the philosophy of Theorem 2.3.1 and in anticipation of the ex-

trapolation problems exemplified in Chapter 4, the calculations in this chapter are

based on Partial Dependence Plots where a uniform distribution would normally be

employed. For cases where an original data sample is not available, a uniform distri-

bution can, of course, be substituted.

3.1 Tests of ANOVA Structures

Throughout this section I assume that the predictor variables are drawn from a

product distribution in order to retain the interpretational properties of the Func-

tional ANOVA. In §3.2 I give a data-driven approximation that is similar to Partial

Dependence Plots (2.5).

A function f is said to have ANOVA structure described by a collection U of

subsets of {1, . . . , d} if fu(x) = 0 for all u ⊂ {1, . . . , d} that are proper supersets of

some element of U. Expressing the subsets of {1, . . . , d} as a lattice space ordered by

the subset operator, this is equivalent to U being a least upper bound on the set of

elements u of the lattice with non-zero σ2
u(fu). In concrete terms, a function of the

form f1(x1) + f2(x2, x3) would be said to have structure {{1}, {2, 3}}, describing the

terms that are necessary to recover the function.

Theorem 3.1.1. The L2 projection of F onto the set of functions with ANOVA

structure described by U is given by:

GU(x) =

|U|∑
i=0

(−1)|U|−i
∑

v∈∩iU

E−vF (x) (3.1)

where |U| is the cardinality of U, ∩iU represents the collection of i-way intersections

among the elements of U, and E−vF (x) represents expectation conditioned on xv.
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To see this, we take the use the following lemma:

Lemma 3.1.1. Define the collection Ū = {v : ∃u ∈ U, v ⊆ u}, then

GU(x) =
∑
v∈Ū

fv(xv)

for GU defined as in (3.1).

Proof. This will be done by induction. It is trivially true for U = φ. Suppose it is

true for some U, and consider U ∪ {u}.

Firstly, this is true for U∩u = {v∩u, v ∈ U}. To get this, we take the expectation

of GU over −v and observe that (2.1) means that any effect outside v cancels out.

Now

GU∪{u}(x) = GU(x) +

|U|∑
i=0

(−1)|U|−i+1
∑

v∈u∩{∩iU}

E−vF (x)

=
∑
v∈Ū

fv(x) +
∑
v′⊆u

fv′(x)−
∑

v′′∈U∩u

fv′′(x)

=
∑

v∈U∪{u}

fv(x)

Since the intersection of Ū and ū is exactly U ∩ u.

We can now proof Theorem 3.1.1:

Proof. We observe that from Lemma 3.1.1,

F (x) = GU(x) + (F (x)−Gu(x))

=
∑
v∈Ū

fv +
∑
v 6∈Ū

fv.
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By (2.1) the second term is orthogonal to any function with ANOVA structure U and

therefor for any other G,

∫
(F (x)−G(x))2dx =

∫
(F (x)−GU(x))2dx +

∫
(GU(x)−G(x))2dx

which is larger than the distance of F from GU.

The natural measure of goodness of fit for this projection is therefore:

E(F (x)−GU(x))2

with the expectation taken over the underlying measure.

Consider a 3 dimensional function, f(x1, x2, x3), with underlying uniform measure.

Project this function onto the set of functions with ANOVA structure {{1, 2}, {2, 3}}:

additive in x1 and x2 and constant in x3. The projection is given by:

E(f |x1, x2) + E(f |x2, x3)− E(f |xx) + E(f) =

∫
f(x1, x2, x3)dx3

+

∫
f(x1, x2, x3)dx3

−
∫

f(x1, x2, x3)dx1dx3

+

∫
f(x1, x2, x3)dx1dx2dx3

= f12(x1, x2) + f23(x2, x3)

+f1(x1) + f2(x2) + f3(x3) + f0

the corresponding two second order effects plus the first order effects and the mean.

Generally, we are interested in the significance of an interaction u, indexed by

a subset of {1, . . . , d}. Putting this formally, we ask: ∃v ∈ U : u ⊆ v: Is there a
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non-zero functional ANOVA component v that contains u? Alternatively: do we need

to consider u or its supersets to exactly recover F? “Significance” here is defined in

terms of its practical use in explaining F , which is a different notion from statistical

significance.

We measure this by projecting F onto functions with ANOVA structure U =

{{1, . . . , d}\{i}}i∈u: the most general structure that does not contain an effect for u.

This is an upper bound for the set of ANOVA structures not containing u. In this

case (3.1) simplifies to:

Gu(x) =
∑
v⊆u

(−1)d−|v|−1EvF (x). (3.2)

Here the quantity of interest, E(F (x)−Gu(x))2, corresponds, in functional ANOVA

terms, to the measure

σ̄2
u =

∑
v⊇u

σ2
v(fv), (3.3)

the sum of variances for effects containing fu.

In the three dimensional example above, σ̄2
1 measures the error associated with

approximating f(x1, x2, x3) with a function of the form g(x2, x3), leaving out x1. The

interaction {x2, x3} can be tested by projecting onto the set of functions of the form

g1(x1, x2) + g2(x1, x3) and so forth.

This measure is of interest in the statistical quadrature literature [19] although it

differs from the measures of subset importance given by [30]. It can be viewed as the

L2 cost of excluding the interaction u from the model and is alternatively labeled the

L2 Cost of Exclusion or L2CoE.
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3.2 Empirical Estimates

In order to estimate the quantities (3.3) empirically I perform a simple Monte

Carlo integration using the training data, in the vein of the partial dependence plots

described in §2.3. Here,

Ê−vF (x) =
1

N

N∑
i=1

F (xv, xi,−v)

is the empirical partial dependence function of F on v. This is used to construct the

empirical projection ĜU(x) from (3.1) and measure

1

N

N∑
i=1

(F (xi)− ĜU(xi))
2. (3.4)

Although I assumed that the data are drawn from a product distribution in §3.1,

this is not strictly necessary. A function which exactly fits a given ANOVA structure

is exactly recoverable with estimates based on partial dependence functions. However,

this is no longer the L2 projection of the prediction function under a known measure

onto a space of functions defined by a given ANOVA structure. In this sense, the

exact interpretation of the empirical L2CoE is less clear.

Note that there is a variance associated with the estimate of both Gu(xi) and the

outer sum of (3.4). The computational cost of (3.4) is O(N2). However, if for each

i we estimate ĜU(xi) using a randomly drawn subsample of size N1, we can write

down

ĜU(xi) = GU(xi) + εi

where εi has mean zero and variance 1
N1

E(F (x)−GU(x))2. This gives

E
1

N

N∑
i=1

(F (xi)− ĜU(xi))
2 =

(
1 +

1

N1

)
E(F (x)−GU(x))2
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with a variance of O
(

1
N

+ 1
NN1

)
. Setting N1 = 1 provides an O(N) estimation scheme

without sacrificing the order of variance. At this point, the estimate of σ̄2
u becomes

ˆ̄σ2
u =

1

2N

N∑
i=1

F (xi)−
|U|∑
i=0

(−1)|U|−i
∑

v∈∩iU

F (xi,v, xr(i),−v)

2

where r(i) is an integer randomly chosen in {1, . . . , N}. Some algebra shows that if

σ̄2
u = 0 (the function does not have an interaction in u) then the estimate also returns

zero. This estimate is very similar to the Monte Carlo estimates employed by [19];

although that paper bases its estimates solely on uniform distributions.

3.3 Graphical Displays

In order to make use of the cost measures developed above as a diagnostic tool, it

is helpful to have a graphical representation of the ANOVA structure of a function.

In a learned-function context, very rarely is the importance score for any particular

interaction identically zero. Were this the case, such structure might be discovered

from algebraic manipulation of the model equation. It is very likely that the details

of the modeling procedure will produce small, spurious, interactions that should be

excluded. Therefore, a representation that conveys which interactions are deemed

significant, as well as the overall importance of interactions, is needed.

For first-order interactions the set of significant interactions can be represented as

edges in a graph that uses predictor variables as nodes. In this case, the graph has

a similar interpretation to a Bayesian Network. That is: F is additive in x{i} and

x{j} given the collection of variables xu if any path from x{i} to x{j} crosses xu. In

fact, a Bayesian Network represents exactly this structure for the log density of the

variables. An equivalent functional interpretation is that F is additive in x{i} and

x{j} if for any fixed x−{i,j}, F (x{i}, x{j}; x−{i,j}) = f(x{i}) + g(x{j}) for some functions

f and g. This implies the statement
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Figure 3.1: An example of the difference in the VIN graph for functions of the form
f(x1, x2, x3) and g1(x4, x5) + g2(x4, x6) + g3(x5, x6).

∫
F (x{i}, x{j}, xu)dxu = f(x{i}, x−{i,j}) + g(x{j}, x−{i,j}).

I have labeled such a representation a Variable Interaction Network (VIN).

The inverse of the L2CoE measure can be taken as a distance between nodes, so

that the graph representation may be incorporated into a multi-dimensional scaling

routine. The package XGvis [4] has been used to produce the graphs in Figures 3.1,

3.2, and 3.3, although the nodes have been positioned by hand. I have found that while

dynamic views of the scaled graphs – having a plot rotate with a three dimensional

representation – are informative about interaction strengths, static two-dimensional

plots have not provided a good representation of interaction strengths.

A representation limited to edges in a graph with variables as nodes still does not

distinguish higher-order interactions, except in so far as they must appear as cliques

in the graph; a fact used in §3.4. These higher interactions are therefore represented

by a “cartwheel” to distinguish them from a set of additive first order terms. The VIN

network that is now produced can be interpreted as a hyper-graph, with cartwheels

representing multi-dimensional edges. This difference is demonstrated in Figure 3.1.
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Figure 3.2: Variable Interaction Network for the function (3.5) showing non-additive
structure.

As an example, consider the function1

F (x) = πx1x2
√

2x3 − sin−1(x4) + log(x3 + x5)−
x9

x10

√
x7

x8

− x2x7. (3.5)

The true VIN components for F are

U = {{1, 2, 3}, {2, 7}, {4}, {3, 5}, {7, 8, 9, 10}} (3.6)

which induces the plot in Figure 3.2.

Here edges {1, 2}, {1, 3} and {2, 3} would normally form a clique if only first-order

interactions were considered. A similar clique occurs for {x7, x8, x9, x10}.

Note that these cartwheels do not alter the graphical interpretation if we allow as

paths any route through an “intersection”.

These plots may also be thought of as a graphical version of the representation

for hierarchical log-linear models given in [7]. There, a log-linear model is specified

1I am indebted to Matthew Finkelman for dreaming up this along with many other wondrous
functions as test examples.



3.4. THE VIN ALGORITHM 35

on categorical data with the highest order interaction terms listed as in (3.6). In

that case, the absence of an interaction represents independence between categori-

cal variables instead of additivity of a response in either categorical or continuous

predictors.

3.4 The VIN Algorithm

While the evaluation of the strength of a particular interaction can be made in

O(N) functional evaluations, there are still 2d interactions to be evaluated. Denoting

by |u| the size of an interaction, the complexity of evaluation also scales as 2|u|. This

becomes prohibitive as d and |u| increase. However, for many functions the strength

of interactions drops off quickly with their size, enabling a very aggressive search

strategy.

Algorithm 3.4.1 makes use of the following monotonicity property:

u ⊂ v ⇒ σ̄2
u ≥ σ̄2

v . (3.7)

That this holds is clear from equation (3.3). Monotonicity provides that a d-way

interaction can only be considered significant if all its (d − 1)-way interactions are

significant2. Thus the algorithm begins by considering main effects - removing one

variable - giving a measure of variable importance. It then proceed to first order

interactions whose components are all in the significant list. Second order interactions

are only considered if all the first order interactions that they contain are included,

and so forth. The algorithm here bears strong resemblance to the Apriori algorithm

for association rules [1]. Both of these rely on a monotonicity property to dramatically

reduce the search space as the complexity of interactions (or item-sets) that are being

considered increases.

2Significance is defined by whether its L2CoE exceeds some threshold ε.
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Algorithm 3.4.1. VIN
Inputs: Monotone loss measure PF , nominally L2CoE for a function F with associated
data matrix X. Threshold ε > 0.
Output: List of interactions u for F with PF (u) > ε.

i = 1
U = φ
Loop:

K = {u ∈ {1, . . . , d} : |u| = i, v ⊂ u &|v| = i− 1⇒ v ∈ U}
For Each u ∈ K:

Calculate PF (u)
If PF (u) ≤ ε

U ← U ∪ u
U ← U \ {v ⊂ u}

End If

End For

i ← i + 1
End Loop (K = φ or i > D)

Suppose I have a threshold ε ≥ 0, and I wish to find u : σ̄2
u ≤ ε. Algorithm 3.4.1

provides a least upper bound for this set.

So long as the function in question does not exhibit very high-dimensional behav-

ior, this algorithm examines only a very small subset of interactions, which themselves

are of low order. I believe that it is unlikely that learned functions are intrinsically

high dimensional. [22] explores many apparently high dimensional functions and finds

that many are very close to additive. In the event of interactions exceeding some given

order (say 6), the algorithm can be curtailed as an indication that interpretation will

become very difficult.

3.5 Upper Bounds on Lattice Spaces

In §3.4, Algorithm 3.4.1 is designed to find u : σ̄2
u ≤ ε. The natural measure of

concern is the overall error resulting from a choice of interaction terms. It would be
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ideal to find a minimal U to give

E(F (x)−GU(x))2 < ε

for GU defined in 3.1: a representation that explains almost all of the function. Here,

minimality is taken to be a least upper bound on a lattice. Instead of the set of

elements with non-zero score σ2
u(fu) given in §3.1, the item of interest is an upper

bound U that gives3

∑
u≺U

σ2
u(fu) ≥ 1− ε. (3.8)

Unfortunately, this problem is ill-defined and many such U may exist.

3.5.1 Breadth and Depth Searches

In order to specify the problem, we can define a score on the set of U that satisfy

(3.8). Importance can be given either to having low-order interactions, or a small

number of variables. For the former, a breadth-first search can be performed, in-

cluding all low-order interactions until the fitting requirement (3.8) is met. In this

case the algorithm successively includes the term with highest L2CoE among those

candidates of lowest order. In doing this I maintain the hierarchical requirement that

possible candidates must already have all of their subsets included. Algorithm 3.5.1

provides formal pseudocode for doing this.

The estimate

σ̂2
u(u) =

∑
v⊆u

(−1)|u|−|v| ˆ̄σ2(v).

can be employed here. The effect of Algorithm 3.5.1 is to place a penalty on the

3u ≺ U is here taken to indicate ∃v ∈ U : u ⊂ v.
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Algorithm 3.5.1. Breadth Search VIN
Inputs: Monotone loss measure PF , nominally L2CoE for a function F with associated
data matrix X. Threshold ε > 0.
Output: List of interactions U for F with

∫
(F −GU)2dx < ε.

S = 0
U = φ
Loop:

K1 = {u ∈ {1, . . . , d} : v ⊂ u &|v| = i− 1⇒ v ∈ U}}
K2 = {u ∈ K1 : |u| = minv∈K1 |v|}
For Each u ∈ K2:

Calculate PF (u)
v ← argmaxu∈K PF (u)
U ← U ∪ v
S ← S + σ2(v)

End Loop S > 1 − ε

maximum size of an interaction, only including higher-order terms after all the lower-

order have been entered. Here the target is a graph that minimizes the size of the

greatest “cartwheel” in favor of many lower-order edges.

The alternative is a depth-first search: including the term with highest L2CoE

among those candidates of highest order. The pseudo-code is identical to that above,

replacing the definition of K2 with

K2 = {u ∈ K : |u| = max
v∈K
|v|}.

This does the exact converse to the breadth-first search and includes a new predictor

variable only after all interactions in the current set of predictors have been allowed.

The graph from this is expected to have large “cartwheels” but a smaller number of

nodes.
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3.5.2 Diagnostics and Greatest Lower Bounds

Given that the problem (3.8) is under specified, I believe that the algorithm as

originally stated provides a reasonable set of interactions. The interactions resulting

from it can be interpreted as a greatest lower bound on the sets U that satisfy (3.8).

Theorem 3.5.1. The collection V = {u : σ̄2
u ≥ ε} represents a lattice greatest lower

bound on collections U that satisfy (3.8).

Proof. Suppose that σ̄2
u < ε, then the collection U = {v : (v 6⊃ u)} has

∑
v≺U

σ2
u(fu) = 1−

∑
w∈V

σ2
w(fw)

> 1− ε.

Conversely, for σ̄2
u ≥ ε, any U with u 6≺ U has

∑
v≺U

σ2
u(fu) = 1−

∑
w∈V

σ2
w(fw)

≤ 1− ε.

This gives a satisfying explanation of VIN as a collection of subsets that must

be included to provide a good fit. Further, it aids interpretation significantly by

providing a smaller collection of interactions.

There remains the question of choosing ε. In §3.6 I have employed a criteria of

explaining 99% of the variance of the function on the empirical distribution of the

training data. An alternative is to consider an ordered plot of scores for main effects

- these typically die off exponentially - and choose a cutoff manually using a natural

break in the scores. This cutoff could be employed throughout, or re-chosen at every
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interaction size. It may well be advantageous to be more or less aggressive in choosing

how many terms to include when the relative scores are seen.

3.6 Example: Boston Housing Data Support Vec-

tor Machine

I examine the ANOVA structure of the support vector machine from §2.3. Here

I picked ε = 0.68 which corresponds to 1% of the over-all variance of the function,

calculated from the predictions given at the original data. At this cut-off, all but

variables “chas,” and “zn” are included. Of the remaining variables, “indus,” “b,”

“age,” “tax,” and “rm” have interactions with “lstat”. There are also interactions

between “rad” and “crim” and “rm” and “ptratio”. These are very similar findings

to those of [28]. There are no second-order interactions, although they have been

found in Figure 8.1 for neural networks trained on the same data. The resulting VIN

plot is given in Figure 3.3. An additive model fit using these interactions and cubic

splines improved test error by 2% indicating that this structure is already sufficiently

flexible to model the data well.

From a diagnostic point of view, Figure 3.3 indicates that this prediction function

can be well represented by a sum of low dimensional terms. This means that plots of

bivariate representations of the function do provide a close-to-comprehensive account

of functional behavior.

3.7 Conclusions

The work presented in this chapter can be viewed as a lattice search for a greatest

lower bound on the set of hierarchical functional ANOVA components that can be used

to represent a learned predictor function. This allows the complexity of a function
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Figure 3.3: Variable Interaction Network for a support vector machine trained on the
Boston Housing Data, with cutoff ε = 0.68.

to be represented in terms of the size of its non-additive interaction components,

providing not only an indication of the intrinsic dimensionality of the system, but

which predictors interact in a non-additive manner.

This algorithm employs the monotonicity of the L2CoE measure to provide an

efficient search through this lattice. Additional sampling theory demonstrates that

this can be done in O(N) function evaluations without compromising variance. I

have developed a graphical display to make the results more accessible to the user

and demonstrated that it has good interpretational properties.

The empirical estimators which I used are tied directly to the estimation of par-

tial dependence plots. These have been chosen as providing a data-driven method

which distorts the distribution of predictor variables less than the uniform distribu-

tion normally associated with the functional ANOVA. In Chapter 7 I show that it is

possible to estimate L2CoE measures without requiring any predictor variables to be
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independent. Where the underlying distribution is not an issue or is unknown, esti-

mates based on a uniform distribution can be employed. The algorithms presented

in this chapter are compatible with any measure of interaction importance for which

the monotonicity (3.7) holds.



Chapter 4

Problems of Extrapolation

The diagnostic tools presented in Chapters 2 and 3 have not addressed the issue

of extrapolation. Most learners also do not specify the behavior of their resulting

functions in the absence of training data. They are usually designed to be universal

approximators – or as close as is practical – and have minimal modeling restrictions.

This, in turn, provides very little prior control of the function in regions of little or

no data. As a result, in most machine learning settings, we can neither control the

behavior of the prediction function at points of extrapolation, nor determine where

this is a problem.

Nominally, extrapolation should not be an issue; assuming a representative train-

ing sample in a static system, the probability of being required to predict a point

of extrapolation is low, almost by definition. However, most training sets are not

representative, do not come from static systems and we may well be required to

extrapolate. In high dimensions, even empirical data generated from a product dis-

tribution can appear to have strong correlation structure. Since functions are learned

conditional on an empirical sample, they may still be effectively extrapolating even

in regions of theoretically large density.

Even when extrapolation is not an issue for prediction, it does become a problem in

43



4.1. EXTRAPOLATION AND PREDICTION 44

two situations. Firstly, when trying to understand the behavior of learned prediction

functions, the diagnostic tools in Chapter 2 require the evaluation of the function on

a measure in which the variables of interest are independent of their complement.

Such an assumption can move a large amount of probability mass into regions of

extrapolation, giving these regions undue influence over a representation of functional

behavior.

The second situation in which extrapolation is a direct issue is when one or more

predictor variables can be controlled. In this case an agency might want to search

over the values of those variables in order to optimize a response. If there is strong

historical correlation between these variables and the rest of the predictors – which

remain fixed for a given example – such a search involves extrapolation.

4.1 Extrapolation and Prediction

Extrapolation is firstly an issue for predictive accuracy. Few machine learning

procedures are built with an eye to extrapolation. This has two main consequences:

• Uncontrolled extrapolation can create obviously unrealistic predictions, even in

superficially reasonable points of predictor space.

• Prediction at points of extrapolation exhibits high variance under perturbations

of the training data, even when the predicted values appear reasonable.

I illustrate this issue with the aid of a bivariate distribution given in Figure 4.1.

The association structure given there consists of an “arm” along each axis and is

similar to that found in the Boston Housing Data. Such structure can be observed in

Figure 5.4, for example, between variables “zn”, “crim” and “indus.” The canonical

point of extrapolation for the purpose of this exposition is (4, 4): clearly different

from the remainder of the distribution, but well within its convex hull.
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Figure 4.1: An example distribution with strong extrapolation. The square at (4, 4)
represents a point of extrapolation which is difficult to diagnose automatically.

The first consequence of extrapolation is that learned functions can produce un-

realistic predictions. In this toy example, a polynomial model can exhibit Gibbs

effects by which I mean large second derivative, where the function “wiggles” wildly

– in the empty region and can also quickly diverge there. Other models, such as

MARS [9], can be susceptible to points at the edge of the data – adding a term like

α(x1− 1)+(x2− 2)+ affects little training data but can become extreme in the empty

region. If this example is generalized to K dimensions by placing an arm along each

axis, even a generic linear model x1+. . .+xK produces a prediction at point (4, . . . , 4)

which is .4K times the largest prediction on the training distribution. K need not be

very large for this to look unreasonable.

In many instances, extreme predictions are obviously nonsensical and are there-

fore easy to diagnose. However, that diagnosis does not account for the variance of

predictive functions when re-trained with different data. The second consequence of
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ignoring extrapolation in designing a learning algorithm is that the resulting predic-

tions can have high variance under perturbations of the training data. This is true

for linear models where theoretical prediction intervals increase away from data. It

is implicitly true where Gibbs effects are observed – large fluctuations without data

to support them are necessarily suspect and can lead to large changes in predictions

even with a small change in the function parameters.

This variance exists even for models that revert to constants away from data and

which are therefore resistant to extreme extrapolation. Figure 4.2 provides a simple

illustrative example for trees and neural networks trained on 200 points drawn from

the base distribution described by Figure 4.1. The response is x1 − x2 + ε with ε

independent Gaussian random variables with zero mean and variance 1. A histogram

of predictions at the point of extrapolation over 100 resamplings of the training data

demonstrates strong bi-modality around −4 and 4: about as much variance as it is

possible to achieve. Effectively, the trees split one “arm” from the other at random

and this then governs which arm the point is assigned to. I also provide a histogram

for the predictions of a 2-20-1 neural network. Bi-modality – an artifact of the tree-

building process – is not in evidence but large variability can still be observed. This

can be explained by the observation that many different weightings in the network can

provide similar predictions on the training data, but the resulting functions diverge

away from these data.

4.2 Deliberate Evaluation at Extrapolation

As noted, extrapolation is not nominally a concern for a static system with a

representative training sample that is large with respect to its dimensionality. This

scenario is not common in data mining and even in this case, there are at least two

situations in which prediction functions may be deliberately evaluated at points of

extrapolation.
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Figure 4.2: A histogram of CART predictions (left) at (4, 4) point for 100 samples
from the data given in Figure 4.1 and response x1−x2 + ε. The right hand plot gives
a histogram of predictions from a 2-20-1 neural network. Both are highly variable.

4.2.1 Controllable Predictors

The first of these is when one of the predictor variables can be controlled by

the agency that commissions the machine learning task. This might be the case,

for example, for a credit agency dealing with customers who default on payments.

One predictor of payment is the action that the agency takes to remind a customer

that the payment is due: the frequency of letters, telephone calls, personal visits etc.

Historically, the more severe the problem, the more extreme the action taken. If the

agency then wants to build a predictor system for the probability of default so that

they can choose a most cost-effective action, searching over the action space evaluates

the function at points of extrapolation. In Figure 4.1, x1 might represent an amount

already paid with x2 being the reminder action taken. Then a search over actions

x2 at x1 = 4 evaluates at (4, k) for k ∈ [1, 10]. A diagnostic tool for extrapolation

at least allows such a procedure to flag predicted values that are untrustworthy. It

also provides a diagnostic for areas of the predictor space in which the agency can

conduct experiments to better gauge a response.
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4.2.2 Product Measures and Extrapolation

The second scenario in which prediction functions are deliberately evaluated at

points of extrapolation occurs in creating functional diagnostics. The Functional

ANOVA decomposition given in Chapter 2 is defined on a uniform distribution on

the unit hypercube, although I have noted that it can be extended to any product

measure without harming the properties mentioned there. However, using a product

measure ignores the fact of machine learning that prediction functions are almost

never learned or evaluated on data drawn from independently distributed predictors.

The most important aspect of this is that a product distribution then places po-

tentially large probability mass in areas of extrapolation. I have already demonstrated

that learned prediction functions often cannot be considered trustworthy in these re-

gions. This can lead to significant distortions in the effects that are presented. Gibbs

effects that result from the use of polynomial models and models using corresponding

kernels can significantly distort the effects that we see, often presenting a much larger

amount of variation than actually exists. More conservative models that extrapolate

as constants are also at issue in allowing potentially interesting effects to be damp-

ened out by large, empty regions in which the function is essentially flat. Further,

we showed both Gibbs effects and even constant extrapolation can be highly variable

under re-sampling of the data, making for very unstable effects. Even when a func-

tion is regarded as being fixed, it is worthwhile asking whether a low dimensional

representation should incorporate a large effect, even if it is true, if it occurs in a

region of low probability.

4.2.3 Partial Dependence Plots and Extrapolation

The Partial Dependence Plots described in Chapter 2 can be regarded as mitigat-

ing the problem of extrapolation in the sense of Theorem 2.3.1. However, while they

focus probability mass closer to the training data than a uniform distribution, the
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implicit assumption of independence between the predictors of interest and the rest

can still involve large amounts of extrapolation. I illustrate this point below.

An Example of Inadequacy

Despite the optimality cited in Theorem 2.3.1, Partial Dependence Plots remain

susceptible to bad extrapolation. A simple example suffices to illustrate this. Consider

the function

F (x, y) = x + y2

defined on the probability measure:

P (x, y) = U(0 < {x, y} < 2, x < 1 ∧ y < 1). (4.1)

This is a unit square minus the upper right quadrant; the distribution for Figure 4.1,

curtailed to the 2-square for the purpose of making this demonstration intelligible.

Further suppose that this function has been learned perfectly except for a spurious

interaction

F̂ (x, y) = F (x, y) + 10 ∗ (x− 1)2
+(y − 1)2

+

which only occurs in the empty quadrant. This is not dissimilar to the bases used in

the MARS algorithm [14], for example, and could plausibly occur as a result of an

outlier. For the purpose of this demonstration, points in this quadrant are regarded

as points of extrapolation.

The distortion in the underlying probability distribution is illustrated in Figure

4.3. Despite having probability mass zero in distribution (4.1), the product distribu-

tion places mass 1/9 in the same region.

The effect of this extrapolation can be seen in Figure 4.4. The example here has
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Figure 4.3: A base set of 30 points from distribution 4.1 used to learn a function, and
the set of evaluation points for a Partial Dependence Plot defined in (2.5).

been chosen to provide for plots on a comparable scale to the effects that we would

like to find. However, it should be clear that the distortion can be made arbitrarily

large – returning to the 10-square in Figure 4.1 allows the spurious term to all but

swamp the true effect.
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Figure 4.4: Partial Dependence Plot distortion due to the movement of probability
mass into regions of extrapolation as detailed in Figure 4.3. Blue lines represent the
effect that we would like to capture, red the actual Partial Dependence Plot.
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While they have not been mentioned so far, conditional dependence plots, given by

E(F (x)|xu), do escape the problem of extrapolation. However, they remain unsatis-

factory in failing to recover low-order components. Figure 4.5 presents the conditional

dependence for the example above. The problem is essentially the same as trying to

do a series of univariate linear regressions on correlated predictor data: the correlation

structure leads to duplication, or cancellation, of effects.
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Figure 4.5: Conditional Dependence Plots (red) and desired effects (blue) for the
underlying distribution (4.1).

4.3 Dealing with Extrapolation

So far, this chapter demonstrates the dangers and problems caused by extrapo-

lation. The rest of this thesis is devoted to developing methods to mitigate these

issues. The first task, of course, is to identify regions of extrapolation. In the ex-

amples above, what constitutes extrapolation is clear. However, this is less easy to

identify in high dimensions. Indeed, the very notion of extrapolation is not formally

defined. Chapter 5 is devoted to developing a theoretical measure of extrapolation

and then finding estimates for it. This at least allows points of extrapolation to be

flagged as such.
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Having identified a point of extrapolation, how should we make a prediction for

it? Ideally, we should report “don’t know” and leave it at that. This is not always

possible. However, it is possible to reduce the variability of predictions at points of

extrapolation. Chapter 6 develops a method to induce a flexible learner to revert to

some trusted prior model away from training data.

Finally, even for stabilized functions, prediction tools that rely on product dis-

tribution tend to revert to that prior model if the distribution of training points

is highly concentrated. In Chapter 7, I develop a generalization of the Functional

ANOVA that accepts a general weight function and retains most of the Functional

ANOVA’s desirable properties.



Chapter 5

Confidence and Extrapolation

Representation Trees

Chapter 4 demonstrated the problems that result from the fact of extrapolation

in machine learning. Given this phenomenon, the first problem to address is to

find which parts of predictor space represent points of extrapolation. Diagnosing

extrapolation is of interest in itself in terms of enabling an understanding of the

distribution of underlying predictor variables. The ideas presented in this chapter

represent one of the few interpretable estimates of density of which I am aware.

I present a new tool to address how we determine whether a given point in pre-

dictor space is a point of extrapolation. Such a determination has multiple uses. It

represents a new diagnostic for outliers, both in the training data set and in unseen

data. It provides a diagnostic for shifts in system dynamics; we can quantify how

much extrapolation we are seeing and whether or not the rate of extrapolation is

increasing. Such an observation suggests a shift in the distribution of the predic-

tor variables and a need to retrain the model. I show that this tool provides an

interpretable density estimate in high dimensions, giving a rough diagnostic for non-

linear covariance structures. Finally, in producing an estimate of the distribution of

53
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the training data, it provides an important element in building diagnostic techniques

that are resistant to bad extrapolation.

5.1 A Measure of Extrapolation

I propose to measure an extrapolation quotient as being the Neymann-Pearson

test statistic at the point of interest for distinguishing the data distribution from a

uniform distribution null hypothesis on the same range. This test is equivalent to

the classification probability of a point being generated by the process generating the

empirical data as opposed to the uniform distribution with each distribution is given

prior probability of one half. Formally, I define:

Extrap(x) =
P̂ (x)

P̂ (x) + U(x)
. (5.1)

Here, P̂ is an approximation to the data distribution, P , which has compact support.

This would normally be an empirical approximation given a data set. More formally,

however, a distribution with non-bounded support can be truncated so as to leave

some small probability mass outside the support. U is then a uniform distribution

on the range of the support of P̂ .

This approach has a number of advantages. I formalize the question, “Is this a

point of extrapolation?” to a test: “Would I choose to believe this point to be generated

from the same distribution as the training data or from a uniform distribution?” Here

we wish to determine if a new data point indicates a move away from the processes

generating the training data and, if so, assess how much confidence can be placed in

the predictions that our learned function produces.

I have chosen the uniform distribution as a natural null hypothesis in the sense

that it is least informative about how a point of extrapolation might be generated.

It also corresponds to a best-case underlying distribution from the point of view of
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extrapolation - the coverage of the space may be sparse, but it provides the same

confidence in predicted values at all areas of the space. This means that Extrap(x) ≥

1/2 indicates that x is in an area of relatively dense points. If not, then some caution

is warranted in using a predicted value1. I also show that the uniform distribution is

computationally convenient to use in the procedures below.

A further advantage is that under this framework, Extrap(x) may be coarsely

estimated using generic classification tools. This avoids the need to find a good density

estimation algorithm. Of course, the density can be recovered from the classifier using

the approach in [14]:

P̂ (x) =
Extrap(x)U(x)

1− Extrap(x)
.

The use of a score for extrapolation is advantageous over a simple classification for

several reasons. To begin with, it provides a sense of the relative density of training

points - a handful of very sparsely distributed points in some region may increase the

confidence placed in a prediction, but not as much as having many training examples

nearby. A confidence score can be used when searching over possible actions to weigh

the potential gain from each action. In Chapter 7, I show that it is possible to design

diagnostic tools that make use of a score to provide low dimensional plots which

capture more behavior than a simple classification of outliers. Of course, when such

a classification is required, a simple cutoff can be applied.

1The confidence placed in predictions, of course, must be tempered with the overall ratio of the
number of points to number of dimensions. This can be done directly for a uniform distribution,
treated like a prior; the measurement here represents a refinement of that confidence.
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5.2 Confidence and Extrapolation Representation

Trees

I propose to estimate (5.1) directly via a classification tool. In particular, tree-

based methods provide a useful framework in which to do this. Particular advantages

of this approach include

• Interpretability, and in particular an interpretable set of regions in which to

display summary diagnostics for functional behaviour. This is demonstrated in

Figure 5.3

• The resulting regions are hyper-rectangles. For more sophisticated diagnostic

tools, the leaves of the tree can be turned into product measures, providing a

mixture-of-products approximation to the data density.

• Trees are both computationally efficient and a known and accepted part of

machine learning, making the understanding of a new diagnostic tool easier.

• Trees can take a known distribution as an argument. In particular, an empirical

distribution can be classified against a theoretical distribution. This provides a

marked improvement in the resulting estimation.

I have labeled this use of trees as Confidence and Extrapolation Representation Trees,

or CERT.

5.2.1 Monte-Carlo Data and the Curse of Dimensionality

An initial proposal might be to simulate a random sample from a uniform distri-

bution and then use CART [3] to classify the two data sets. This approach, however,

turns out to produce highly variable measures. Moreover, in high-dimensional situa-

tions in which real data occupies a space of small Lebesgue measure, a tree is often
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able to exactly separate the real data from a Monte-Carlo uniform sample long before

it captures the distribution of the real data. This situation has the potential to leave

regions of extrapolation marked as regions of confidence.

By way of illustration, consider N points drawn from a multivariate “porcupine”

distribution, P1, defined by the natural extension of the base distribution in Figure

4.1 to d dimensions, placing an arm along each axis. Following the demonstrations in

§4.2.3 the “arms” are each of length 2 and width 1. We leave an L-shaped marginal

on each pair of predictor variables as in Figure 4.3. We will formally define this as

the set

{
x :

d∑
i=1

I(xi > 1) ≤ 1

}
:

only one of the coordinates may be greater than one.

The support of P1 has U(0, 2)n Lebesgue measure d + 1 and requires 2d(d − 1)

splits to define. Now let us define a larger density P2 by taking P1 and selecting a

subset u of k variables, and using their maximum in the definition above. In other

words either the maximum of the xu is greater than one, or at most one of the other

variables is. Formally, P2 is defined by

{
x : I(max

i∈u
xi > 1) +

∑
j∈−u

I(xj > 1)

}
.

The area covered by P2 has Lebesgue measure 2k + d − k. Following the Monte-

Carlo strategy of classifying N points from P1 away from N uniformly distributed

points, the probability of defining P1 with a tree after getting as far as P2 is the

probability of some uniformly distributed random point falling in the support P2 but

not P1, or

1−
(

1− 2k(d− k + 1)− d− 1

2d

)N

.
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N must scale linearly with d for this probability to remain constant. However, there

are
(

d
d−k

)
alternative distributions that can be defined this way, so the probability of

producing a tree that does not describe all the detail of P1 is large.

The important observation here is that the support of P2 includes a region that

is assigned large confidence values, despite having zero probability mass. Note that

it is possible for points in this region to be 2k/2 distance from each other. So the

probability of missing significant extrapolation is large.

A similar analysis can be performed for the real data in this situation, as this

also must scale by N to ensure that the density is not empty above the value 1/2

in some variable. However, for a conservative estimate, this is a smaller problem.

Additionally, since we are considering extrapolation on a function learned given the

predictor distributions, it makes sense to call this extrapolation for the data that we

have, even if there is a high probability of a different training set placing weight there.

Note that while this demonstration is given for trees, it can be made to apply

to other classifiers. The essential issue is that for high dimensional data, a Monte

Carlo sample of the same size can be too-easily separable from the training data.

This problem can be alleviated somewhat by including more Monte Carlo points and

giving each a correspondingly lower weight. However, for the distribution described

above, the number of points still needs to increase at a combinatorial rate, quickly

making the approach infeasible.

5.2.2 CART and Distributional Information

Trees are capable of taking an exact distribution as an argument instead of an

empirical data set. For each split, we merely replace the number of Monte-Carlo

uniform data points on each side of the split with the expected number. This both

reduces sources of variance in the original data and allows a much finer approximation

to the empirical data density.
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To illustrate this point, the results of a simulation are reproduced in Figure 5.1.

I simulated 50 data sets of 1000 points with a Gaussian distribution in 5 dimensions.

I then used CART to classify them away from another 1000 points, uniformly dis-

tributed on the empirical range of the data. A tree was also built for each of the data

sets using the technique described above. Figure 5.1 compares their accuracy, stabil-

ity, and resolution on a further set of 1000 normally and 1000 uniformly distributed

points.
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Figure 5.1: Performance for CART with Monte Carlo uniform samples (solid) and
with uniform expectations (hollow). Average accuracy is plotted on the x axis for
pairs of trees against diversity on the y axis, measured by the proportion of points
classified differently (left). Right: Misclassification accuracy is plotted for individual
trees on the x axis against size of tree given by number of nodes on the y axis.

For these instances the trees were pruned in a standard manner - using the 1

standard error rule and cross validation for the standard CART trees. A separate

test set of normally distributed points along with the expected uniform points was

used to prune the trees incorporating distributional information. It can be seen from

these experiments that the use of distributional information improves the trees in all

three dimensions, providing improved classification performance, greater classification

stability and greater resolution.
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5.3 CERT Details

There are several components to the CART algorithm, not all of which are nec-

essarily appropriate in this setting. This section provides a list of specific criteria

included in CERT.

5.3.1 Splitting Criteria

All tree-building algorithms use a greedy search strategy, picking the next split

on some score. CART uses the Gini index, also employed in CERT. C4.5 [24] uses

binomial entropy, which is equally valid.

5.3.2 Pruning

The CART procedure builds a large tree and then “prunes” it - removing lower

splits which do not increase estimated predictive accuracy. In CART the amount

of pruning done is chosen based on cross-validated misclassification error. The trees

used here have been pruned based on test-set misclassification error, again using

distributional information for the uniform distribution misclassification rate.

Alternative scores can be employed for different purposes. If an estimate of density

is required, then using binomial entropy calculated by a test set may provide more

accuracy. Empirically, that strategy leads to larger trees. Alternatively, a measure of

independence between variables may be useful for developing a representation that

can be used with diagnostic tools.

A final possibility for some applications is the C4.5 rule-pruning strategy. This

does not maintain the tree structure. However, the density model produced from this

approach now takes the form of a mixture of overlapping uniform distributions, also

indicating a potential fuzzy clustering.
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5.3.3 Missing Values and Surrogate Splits

When missing values are encountered on new data which are required at some

split, CART tries to determine which branch to follow based on correlations between

predictor variables. This uses a technique called surrogate splits. CERT diverges

from CART on this issue and I employ the strategy of C4.5. Suppose that x{i} is

missing, then the natural measure of extrapolation should be

Extrap(x{−i}) =
P (x{−i})

P (x{−i}) + U(x{−i})

This can be written alternatively as

P (D|x{−i}) =
K∑

k=1

P (D|Lk)P (Lk|x{−i}),

where D is an indicator that x was generated from the data distribution and {L}Kk=1

represent the terminal nodes of the tree. Now observe that P (Lk|x{−i}) is exactly the

weight given to each leaf if the tree is traversed according to the C4.5 strategy - going

left and right at splits involving x{i} with probability equal to the proportion of total

(real and uniform) weight in that direction.

5.3.4 Priors and Loss Functions

The quantity Extrap(x) as given in (5.1) assumes equal priors on the uniform and

data distributions. Theoretically, this does not harm the accuracy of the procedure.

If Extrap(x) is taken from known distributions, then changing the prior weight on the

data distribution corresponds to a monotone transformation of Extrap(x); there is a

one to one correspondence between cut-off values of Extrap(x) – say for the purposes

of outlier detection – and prior weights.

Priors can make a difference in CERT, however. Here they are equivalent to
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changing the values in the loss matrix and this in turn can affect the splits that

are chosen in the learning process. Placing more weight on a uniform distribution

will result in a tree that aggressively attempts to find regions with no real data.

Correspondingly, up-weighting the real data will result in a tree that seeks regions of

high data density. If the problem is, for example, outlier detection, priors should be

chosen to reflect the relative importance of misclassifying outliers and training data.

5.4 Outlier Detection

An obvious first use for any measure of extrapolation is as an outlier detection

device. I simply call a point x an outlier if Extrap(x) is less than some constant

C. Figure 5.2 compares the performance of CERT with the common technique of

excluding points based on their Mahalanobis distance based on the training covariance

from the mean of the training data. We have chosen two distributions to test this.

The first is a 5-dimensional Gaussian with a tri-diagonal correlation matrix that takes

0.3 on the non-zero off-diagonals. Mahalanobis distance should be optimal for this

situation. The second is a 5-dimensional extension of the distribution from §2.3 - an

“arm” extending along each axis, which should be well-described by CERT. I used

200 training examples and outliers were generated by a uniform distribution. In order

that the performance of the two methods be comparable, I have drawn new samples

from the training distribution and plotted the percentage of misclassified “outliers”

against the percentage of misclassified “real” examples.

From Figure 5.2, Mahalanobis does, as expected, outperform CERT on a multi-

variate Gaussian. This discrepancy becomes larger as the correlation between vari-

ables becomes stronger. CART allows splits to be made on linear combinations of

variables – although that option is rarely used. It seems reasonable to speculate that

employing such splits with CERT might improve CERT’s performance. For an in-

dependent Gaussian distribution – also provided in Figure 5.2 – the performance of
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Figure 5.2: Performance of outlier detection techniques. CERT (solid) and Maha-
lanobis distance (dashed) on a multivariate Gaussian (left), an independent Gaussian
(middle) and porcupine distribution (right). When the contours of the distribution
of data is non-convex, CERT has a significant performance advantage.

the two methods is much closer. Having more training examples also improves the

relative performance of CERT. In the second distribution, however, it is quite clear

that CERT outperforms Mahalanobis distance; any ellipsoid that tries to span the

training data in this case inevitably contains large amounts of empty space.

Although I do not present results here, given a measure of extrapolation, concept

drift can be measured by the amount of extrapolation occurring. If the sum of

extrapolation scores taken over some period shows an increase beyond an acceptable

level, there is good reason to retrain the model. CERT can also be used in this context

to indicate into which regions the underlying predictor distribution is moving.

5.5 Descriptive Statistics

Beyond the utility of being able to detect extrapolation well, diagnostic tools can

also be helpful in understanding where the training data lies and the associations that

exist between variables. A large factor in the choice of trees as a classification tool is

that they provide an interpretable set of regions in which to examine the behavior of a
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learned function. These regions remain high-dimensional and do not admit any easier

display of a function. However, they do allow a summary of the behavior of a function

within that region. Descriptive statistics such as function means and variances on

each region as well as the proportion of original data points in a region provide

an assessment of how serious extrapolation may be. In particular, diagnose areas

where large Gibbs effects occur and allows the function to be artificially smoothed,

or predictions within those regions to be flagged as suspect.

In Figure 5.3 below, I present the graphical representation of the underlying pre-

dictor space for the Boston Housing data and diagnostic statistics for a 12-20-1 Neural

Network trained on these data. In particular, for each leaf l, I report four numbers

in order:

• The number of real data points in the leaf, Nl.

• The expected number of uniform points in the leaf, Ul.

• The mean value of the prediction function evaluated on a uniform sample in

that leaf, µl.

• The variance of the function evaluated on the same uniform sample, σ2
l .

We would then be concerned about predictions in leaves with a small number of

real data points. This concern would be strengthened if we observe a large variance

or an extreme mean in that leaf. Such concern incorporates a heuristic belief that

predictions are likely to be highly variable – under resampling of the training data –

in regions where F̂ changes a great deal without data supporting such variation.

In this context, it is tempting to produce a pseudo-prediction interval:

F (x)± Φ−1(α/2)
VarΩx(F )

Nx|Ωx|
. (5.2)

Here VarΩx(F ) represents
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Var(F (x)|x ∼ U [Ωx])

where Ωx is the leaf of the CERT model that contains x and Nx represents the number

of training samples in that leaf. For differentiable F , this interval would formalize a

belief that

Var{xi}N
i=1

(
F̂ (x; {xi}ni=1)

)
∼
|| d

dx
F (x)||2

NP (x)
,

which is assumed to be approximately constant in each leaf. (5.2) is then a δ-method

estimate of this quantity.

Despite the intuitive appeal of this approach, the variance of F (x) with respect to

resampling the training data depends crucially on the model assumptions and fitting

procedures involved in producing F and such an estimate could be highly misleading.

5.6 Example: Boston Housing Data

I used the Boston Housing Data to create a representation of the underlying

predictor space, leaving out a test set of size 50 for pruning purposes. The resulting

tree is reproduced in Figure 5.3. Reported in the leaves of the tree are the means and

variances of a 12-10-1 neural network trained on the data using the default values

of the R package nnet [25]. Here it can be seen that the fourth leaf from the left

contains almost all the data mass. Concerns might be raised about predictions in the

fifth and last leaves as having no data mass and relatively low values. The first leaf,

too, is problematic in having very low data mass, yet a very high variance.

In order to capture some idea of the representativeness of the tree, Figure 5.4

provides a matrix of scatter plots of the data on bivariate axes along with contours

of the bivariate marginal densities as calculated in the tree-based representation. For

the sake of an alternative depiction of nonlinear correlation structure, the plots are
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given with Lowess curves fitted for the predictors on the upper diagonal. CERT can

be seen to capture some, though not all, of the bivariate associations. Part of this

is due to data fragmentation – an individual leaf may not have enough data to be

distinguished from a uniform distribution.

Comparing CERT and Mahalanobis distance to detect uniform outliers found that

the probability of “outlier” misclassification differed by at most 0.004 for any value of

Type 2 error. An examination of Figure 5.4 indicates a combination of approximately

linear relationships, with some of the form of Figure 4.1.

Figure 5.3: Tree-based density model for the Boston Housing Data with a 12-10-1
neural network.

5.7 Conclusions

CERT provides a new tool in diagnosing unusual points. I have defined a natural

measure of extrapolation as being the relative likelihood of the data distribution

versus a uniform distribution. This measure may be efficiently estimated with a

variant of CART, and I have demonstrated that the inclusion of exact distributional

information aids both the accuracy and stability of the resulting estimate.
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This tool can now be used in several settings. To begin with, it is a straight

forward diagnostic tool for high-dimensional covariance structures in a set of predictor

variables. It also aids our understanding of function dynamics in areas of low data

density. The measure can be used as an outlier-detection device: rejecting any data

point that is in a region of low probability. It is also a diagnostic for shifts in system

dynamics. The mixture of products representation of the data density implied by

CERT can be used to create diagnostic tools as is shown in Chapter 7.
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Figure 5.4: A plot of marginal density contours and points (lower triangle) and points
with Lowess curves (upper diagonal) for the Boston Housing Data.



Chapter 6

Data-Augmented Regression

for Extrapolation

The tools demonstrated so far in this thesis are concerned with diagnostics and

extrapolation. In this chapter I will deal with the problem of making predictions at

points of extrapolation. Given that we know that the next new example is a point of

extrapolation, how are we to make a prediction for it? Ideally we should decline to

do so. This, however is not always possible. It is possible, however, to stabilize the

predictions that we give by reverting to a prior, stable base model as points become

further from known examples. I show how that can be achieved through a process

of adding data to the training sample to influence the predictive function in this

direction and suggest that for most purposes a constant represents an appropriate

base model.

The main motivation for this technique comes from the problem of extrapolation

and I focus on this problem, believing the usefulness of regularization to be well under-

stood. Nonetheless, I show that the techniques I present often lead to an improvement

in predictive accuracy on the data distribution. §6.1 makes an argument for reverting

to a simple null model as we are asked to evaluate a learned function further away

69
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from training data. §6.2 presents a method of augmenting training data with simu-

lated data designed to encourage a learner to make this reversion automatically. This

technique is compatible with any learning procedure. In §6.3 I examine the connec-

tions between this technique and existing methods. §6.4 will examine some practical

issues in choosing parameter values. §6.5 demonstrates the method in practice.

6.1 Heuristics for Prediction at Extrapolation

My purpose in this chapter is to propose a sensible approach to making predictions

at points of extrapolation. I argue that, in the context of learning a function with a

universal approximator, the further a point is from training data, the less information

the function has about the distribution of responses at that point and the more it is

guided by details of its learning process. Under these circumstances, it is appropriate

to revert to some known “base model”, m(z), at points far away from the training

data. The most simple of these is a constant; in the context of squared error loss this

translates to the mean response which I generally assume to be zero.

Where prior knowledge about system dynamics is available, using a simple, highly-

structured model rather than a constant as a null may be practical. Care should

be taken in choosing these, however; if our prior knowledge about model structure

pertains in some small region of predictor space, applying that structure may still lead

to prediction functions that extrapolate poorly. I therefore believe that strong prior

knowledge is needed on the whole space before discarding a constant base model.

Bayesian estimates can often be thought of as a form of regularization and this

is true of these ideas as well - shrinking predictions toward a more stable model.

In terms of the bias-variance trade-off, this can also produce models with improved

predictive accuracy as demonstrated in §6.5.
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6.2 Data-Augmented Regression for Extrapolation

The requirement that a function return to a base model away from training data

has not been implemented as part of the learning procedure in most universal ap-

proximators. However, this behavior can be achieved by stochastically generating

uniform data with response given by the base model and adding it to the training

data. The resulting procedure, which I term Data-Augmented Regression for Ex-

trapolation (DARE) can supplement any regression method. A formal description is

given in Algorithm 6.2.1.

Algorithm 6.2.1. DARE

Inputs: Regression algorithm L, training data D, bounding region in predictor space

R, background model m : R → R (typically m ≡ 0), total ”weight” for augmented

sample s.

Output: Prediction function f : R→ R

1. Draw an ”augmentation sample” U of size Nu with total weight s as follows:

(a) Draw N uniform points in R, denote them z1, ..., zNu

(b) Assign to each zi response m(zi)

(c) Give each observation zi weight s/Nu.

2. Apply L to D ∪ U and output f = L(D ∪ U).

6.3 Connections

6.3.1 Gaussian Process Priors

DARE can be thought of as placing a random field prior on the prediction values

f(x) with a covariance function that is zero away from the origin. Using the Monte
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Carlo population in place of the “large” sample, and assuming that L uses a cost

function c, we can write this cost as:

N∑
i=1

c(f(xi), yi) + γ

∫
R

c(f(x), m(x))dx. (6.1)

More precisely, as Nµ → ∞, the cost associated with any estimate f tends to (6.1)

by the strong law of large numbers.

For squared error loss, this translates to a maximum a posteriori estimate for f

with y ∼ N(f(x), σ2), and a Gaussian field prior f(x) ∼ N(m(x), 1/γ). Different loss

functions imply different priors, for example, using absolute loss implicitly assumes a

double exponential field prior.

6.3.2 Generalized Ridge Regression

DARE can be viewed as a non-parametric generalization of ridge regression when

m(x) = 0. In a linear regression context, ridge regression uses a coefficient vector β

that minimizes

N∑
i=1

(yi − xT
i β)2 + λ

d∑
j=1

β2
j (6.2)

which has been shown to provide superior predictive performance [14]. Ridge has a

Bayesian interpretation, the solution to (6.2) being the maximum a posteriori esti-

mates for β with yi ∼ N(xT
i β, σ2) and β having prior N(0, σ2/λ).

It is easy to see that DARE corresponds to ridge regression in a when a linear

function is substitute in (6.1) and the uniform distribution is centered on the mean

of the training data. A little algebra gives that the second term of (6.1) becomes:

∫ ( d∑
j=1

x{j}βj

)2

dx{1} . . . dx{d} ∝
d∑

j=1

β2
j ,
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the ridge regression penalty. Ridge can also be viewed as adding data to the linear

optimization problem. The penalty term in (6.2) can be re-written

λ

d∑
j=1

β2
j =

d∑
j=1

(0− λeT
j β)2

where ej is 1 in the jth coordinate and zero elsewhere. Thus ridge is equivalent to

augmenting the original data with λe1, . . . , λed and giving these extra records response

0. I view this as exploiting the linearity of f to achieve exactly what DARE targets

stochastically.

6.3.3 Kriging and Reversion to the Mean

The reversion to a mean response behavior is already achieved by the techniques

of Kriging; viewing a function as a random Gaussian process [6]. The use of Kriging

in machine learning has been suggested in, for example, [32]. Placing regression

in a Gaussian process setting provides a useful theoretical framework in which to

discuss regression. The responses are regarded as being Gaussian, but with a known

covariance structure that depends on the predictors. This allows Kriging to be viewed

as a subset of kernel methods, but also provides uncertainty estimates for prediction

and, particularly a reversion to the response mean - the marginal distribution for

the response of a new point is Gaussian about the response mean, and the posterior

trends back to that as the covariance vector between the new response and known

examples tends to zero. Thinking of (6.1) as incorporating a prior in the same manner

as ridge regression provides an analogous framework. Kriging can also incorporate a

reversion to some more complicated null model in a similar manner to DARE.

Kriging has the same disadvantages as kernel methods: computational cost and

the choice of a variogram or covariance function. The variogram does allow prior

knowledge of covariance structure to be incorporated into the model, but must be

specified arbitrarily if such knowledge is unavailable. The cost of training the model
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is O(N3) in the number of data points, and O(N) for each prediction. DARE may

be regarded here as substituting an alternative learning procedure both as a pseudo-

estimate of covariance and in providing faster training and prediction.

6.3.4 Prior Information, Virtual Examples and Classification

The concept of adding data has been advocated in [21] in the context of classi-

fication. Here, prior knowledge about regularity conditions in the data – rotational

symmetry, for example – can used to create “virtual examples” to be added to the

data set. The sorts of prior information discussed there are highly dependent on the

learning context and are often less obviously available for regression problems. They

do not discuss classification strategies that lack prior knowledge.

Prediction variance at points of extrapolation is, of necessity, constrained in a

classification setting, although examples like those in Figure 4.2 can still be easily

constructed. A DARE approach would take one of two forms; uniform data could be

added with a new “don’t know” label to indicate that this is not a point that can

be safely classified. If classification predictions are required, the DARE philosophy

suggests that a “don’t know” output should revert to a decision that is uninformed

by predictor variables: predicting the most numerous class.

6.4 Parameter Values and Rules of Thumb

The relative weight of D and U in Algorithm 6.2.1 governs the extent to which

learned functions are allowed to extrapolate away from the base model m(x). I

assume the procedure L accepts weights on observations. In this case, the size N of

the uniform sample should be as large as computationally feasible, to best emulate a

uniform prior distribution (see §6.1 and §6.3 for motivation). The balance between

D and U is achieved through the weighting factor s/N . If L cannot take observation
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weights, this trade-off has to be governed directly by N . In order to cover the space

well, it may be necessary to average the process with repeated resampling of U .

Methods without Observation Weights

An alternative to averaging DARE with repeated samples from U , if the learning

process is already computationally expensive and L does not take observation weights

is to observe that if F minimizes

∫
c(F (x), y)dP (x, y)

then the minimizer of (6.1) is given by

P (D|x)f(x) + (1− P (D|x))m(x)

where P (D|x) is the classification probability of x being generated by the data dis-

tribution as opposed to the uniform distribution, with prior weight determined by γ.

For γ = 1 this exactly translates to the measurement Extrap(x) from Chapter 5. It

is then possible to learn F̂ on the training data in the usual manner and to estimate

P (D|x) – for example, by CERT – and to combine these two quantities. If F̂ suffers

large Gibbs effects, this strategy will be less effective at dampening them than DARE.

Nonetheless, if DARE is not feasible, this may provide a partial answer.

Amount of Monte Carlo Data

How much Monte Carlo data is sufficient depends on the particular learning pro-

cedure used. A very conservative rule of thumb would be to use some estimate of

the maximum density of training points, if one is available. It seems unnecessary to

provide a greater density than this uniformly across the range of the data. For high

dimensional examples, however, that goal may still be infeasible.
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Prior Weights

A good value for the relative weight of true and Monte Carlo points can be es-

timated by cross validation. Since this weight affects test-error performance as well

as stability, re-sampling the uniform distribution should be done along with standard

cross validation. The results in §6.5.1 and §6.5.2 provide separate estimates of stabil-

ity and test error (the error on Monte Carlo uniform test points estimates pointwise

stability). The two can be combined and weighted to represent relative importance

of prediction and stability, and thus to select an “optimal” relative weight.

DARE and Model Structure

In some situations regularization may not be necessary for prediction purposes

and may actually be harmful. This is typically the case in highly structured learning

situations, where the size of the model space considered (via VC dimension or degrees

of freedom) is reasonably small compared to the training data available. DARE may

still be useful for controlling extrapolation in such cases, and we are then faced with

a choice between prediction on the “standard” data and control of extrapolation.

6.5 Experiments

In §6.5.1 and §6.5.2 I present the results of using DARE on simulated and real

world data. In each, I employ DARE with the RPART implementation of CART and

with “quadratic regression” – using all linear and quadratic terms as basis functions

in a least-squares fit. In each case, the augmentation sample had size 5000. I graph

test error and variance against the log of the relative weight on Monte Carlo samples

– increasing weight providing more regularization. Solid lines provide test error on

independent test sets, plotted with 95% confidence intervals. Dashed lines are the

mean pointwise variance on a further 5000 uniformly distributed points.
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All the plots show a region of relative weight where predictive performance is not

hurt, and is often helped, by DARE. At the same time, within these regions I am

able to achieve a significant improvement in the over-all stability of predictions as the

relative weight of the augmentation sample increases.

6.5.1 A Simulated Example

I examine a simulated example in which true probability distributions are known. I

take as predictor variables 500 examples of a 30 dimensional mixture of two Gaussians:

(x1, . . . , x30) ∼ 0.5N(µ1, I) + 0.5N(µ2, I)

in which µ1 has value 1 in the first fifteen entries and zero in the second fifteen and

µ2 is zero in the first fifteen entries and 1 in the second. The response is given by the

linear sum

y =
15∑
i=1

xi −
30∑

j=16

xj + ε

with ε iid N(0, 1). There are two groups; the first having largely negative response

and the second largely positive. I repeated the experiment 20 times to form variances

and give the results in Figure 6.1. For both CART and quadratic regression, the

improvement in predictive accuracy is statistically significant.

6.5.2 DARE and Boston Housing Data

To provide a real-world example I used the Boston Housing Data [12]. In this case

I again employed CART and quadratic regression. Cross validation was undertaken

using a test-set sample of size 100 randomly drawn each of 100 times. The Boston

Housing Data was selected as exhibiting structure similar to Figure 4.2, creating

severe extrapolation. For flexible methods, this results in stabilization at points of

extrapolation more than regularization on the data distribution, as can be seen in a
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Figure 6.1: DARE results on a simulated data set using CART (left) and quadratic
regression (right). Solid lines give test error performance as a function of relative
weight given to the added data, dotted lines around it provide 95% pointwise confi-
dence intervals. Dashed lines are mean pointwise variances for a uniform distribution
over twenty resamplings. Variances are plotted with respect to the axis on the right
hand side.

less significant improvement in predictive accuracy. Nonetheless, some improvement

in predictive performance can be seen and DARE can provide much more stable

extrapolation without harming performance.

6.6 Conclusions

In this chapter I have considered the problem of making predictions at points

of extrapolation. Few learning procedures are designed to produce stable results at

points of extrapolation; even constant extrapolators can exhibit high variance away

from training data. In order to stabilize these predictions and recognize their semi-

arbitrary nature, I propose that predictions should be shrunk toward a base model

in proportion to the density of training points near them. This follows the heuristic

argument that as new examples get further away from known examples, the model
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Figure 6.2: DARE results on the Boston Housing Data using CART (left) and
quadratic regression (right). Solid lines give test error performance as a function
of relative weight given to the added data. Dashed lines are mean pointwise variances
for a uniform distribution on the data range over 100 resamplings. Variances are
plotted with respect to the right-hand axis.

predictions becomes less informed about the response.

In order to carry out this shrinkage, I propose a very simple procedure of gener-

ating new uniformly distributed data, giving it the response associated with the base

model and augmenting the training set with this data. Unless strong prior knowledge

is available that pertains to the whole space, I recommend that an appropriate base

model should be constant. This idea has the advantage that it can be applied to

any learning method. Viewed from a Bayesian perspective, this method amounts to

placing a random field prior on prediction values, basing predictions on a null model

unless empirical data – in the form of nearby training data – provides evidence to

the contrary. I also show that when linear regression is employed, the method is a

stochastic form of ridge regression.

The extent to which DARE regularizes depends on the flexibility of the learner

that is employed and the concentration of the training examples in predictor space.

These are the factors that also influence the extent of our concern about extrapolation.
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Regularization often also has a positive effect on predictive accuracy. I have demon-

strated on simulated and real examples that it is possible to simultaneously improve

predictive accuracy on the data distribution and stability at points of extrapolation.



Chapter 7

Extrapolation-Resistant

Diagnostics

Chapters 2 and 3 have already explored the use of the Functional ANOVA in pro-

viding diagnostic aids to accompany machine learning procedures. There it was shown

to provide a desirable set of properties for low-order effects; optimality of the effects,

additivity preservation, and comprehensibility. I have noted in Chapter 4, however,

that the Functional ANOVA relies on having a product measure as an underlying

source for data, and that when this does not pertain the effects that are presented are

subject to distortion that can be arbitrarily bad. In most cases, a product measure

is not a reasonable representation of the distribution of the underlying predictors.

These typically have complex, non-linear dependence structure, leaving large parts

of space empty. When training data are drawn from this distribution, these holes in

the data translate to regions of extrapolation. Here, functional behavior is dictated

by the learning process rather than the training data. For “good” extrapolation, this

may be close to constant, but many functions can exhibit Gibbs effects, and even con-

stant extrapolation can exhibit high variance between different sets of training data.

I have shown that by evaluating a prediction function on a product distribution, the

81
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Functional ANOVA moves a large amount of probability mass into those regions of

extrapolation, potentially swamping plots with Gibbs effects, or damping out true

effects with disproportionate weight on areas where the function does not change.

In this chapter, I propose a generalization of the Functional ANOVA that can

incorporate a non-product measure. One of the important criteria that I want to

satisfy is that the decomposition must preserve additivity. The key to doing this is to

represent the entire set of Functional ANOVA effects as satisfying a joint constrained

optimality criterion. This constrained criterion can then be generalized to accept any

measure.

7.1 Desirable Properties of A Functional Effect

Having illustrated the problems associated with current diagnostic tools and before

embarking on developing new ones, it is important to ask what it is that a low-order

representation of functional behavior should provide. I suggest four main properties

below.

Comprehensibility

The plots should represent some understandable and appropriate quantity. Since

any low-dimensional representation of a function necessarily removes information

about functional behavior, in what sense such a representation captures that behavior

should be well understood and appropriate. One approach to doing this is through

an explicit optimality criterion. In the case of the Functional ANOVA, effects give

the projection of the prediction function onto a subset of the variables.

Optimality

A low dimensional representation should capture as much of the functional behav-

ior as possible, in some well-defined metric. We would like to understand as much of
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the function as possible through visualizable effects; we would also like to know how

much of the function is not explained by these effects. However, this can model a

function too closely: low dimensional plots should provide this information in aggre-

gate, leading to the criterion of additivity. Functional ANOVA effects are the closest

L2 approximation to the full prediction function using only the effect variables.

Additivity

A function that is truly additive in some set of variables should be exactly recov-

erable in terms of the additive components. Here, plots of conditional dependence

are not satisfactory in being too aggressive; they explain more behaviour individually

than partial dependence plots but collectively provide a bad approximation to func-

tional behavior. The variance decomposition of the Functional ANOVA ensures that

additivity is preserved.

Extrapolation-Resistance

As demonstrated, product measures move probability mass to points of extrap-

olation where we do not wish to measure, or place a large emphasis on, functional

behavior. A good measure puts low weight on prediction values at these points.

I have commented that the Functional ANOVA fits first three criteria, and this

property is managed through the use of a product measure. In some sense, so long

as we are only interested in the learned function as given and are happy to accept

its extrapolation, this is all that is needed provided we accept some discrepancy due

to the distortion of the underlying probability measure. However, if the dynamics

of the system in question per se are the point of interest, then this can provide very

misleading representations. As I show below, the solution lies in estimating the effects

jointly, rather like the solution to the linear least squares problem.
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7.1.1 Optimality Criteria for the Functional ANOVA:

The Functional ANOVA effects fu trivially satisfy the optimality criteria:

fu(xu) = argmin
gu∈L2(Ru)

∫ (
gu(xu) +

∑
v⊂u

fv(xv)− F (x)

)2

dx.

In fact, all the terms in the Functional ANOVA can be jointly defined by a constrained

optimization.

Theorem 7.1.1. The effects of the Functional ANOVA decomposition jointly satisfy

{fu(xu)}u⊂{1,...,d} = argmin
{gu∈L2(Ru)}u∈{1,...,d}

∫  ∑
u⊂{1,...,d}

gu(xu)− F (x)

2

dx (7.1)

under the constraints

∀u ⊂ {1, . . . , d}, ∀i ∈ u

∫
fu(xu)dx{i}∪−u = 0. (7.2)

I remark that these constraints have been changed to incorporate the integral over

x−u. This has no practical effect on the standard Functional ANOVA. However, in

the generalization below, I need the marginal distribution on xu in (7.2) for a solution

to exist.

Proof. This relies on a calculus of multiple variations, provided here for the sake

of demonstration. Further arguments of this type have been relegated to Appendix

B. Assume {fu}u⊂{1,...,d} satisfies the criteria above. For any {hu ∈ L2(Ru), εu >

0}u⊂{1,...,d} that also satisfy (7.2) let

{gu ∈ L2(Ru)}u⊂{1,...,d} = {fu + εuhu}u⊂{1,...,d}
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gt for εu > 0, u ⊂ {1, . . . , d}. Then taking the gradient of (7.1) at {gu}u⊂{1,...,d}

with respect to εu and evaluating at zero gives the equations: ∀hu ∈ L2(Ru), ∀u ∈

{1, . . . , d}

∫
fu(xu)hu(xu)dx +

∫ (∑
u 6⊂v

fv(xv)

)
hu(xu)dx =

∫ (
F (x)−

∑
v⊂u

fv(xv)

)
hu(xu)dx.

The second term in the left hand side is zero by the conditions in (7.2) and the

remaining equations provide the result.

This does not guarantee a unique minimum. The convexity of the problem follows

from the general result of Theorem B.2.1

The generalization of this is now very simple; merely add a general finite measure

w(x) in place of the uniform measure. The criterion then becomes

{fw
u (xu)}u⊂{1,...,d} = argmin

{gu∈L2(Ru)}u∈{1,...,d}

∫  ∑
u⊂{1,...,d}

gu(xu)− F (x)

2

w(x)dx (7.3)

under the constraints

∀u ⊂ {1, . . . , d}, ∀i ∈ u

∫
fw

u (xu)w(x)dx{i}∪−u = 0. (7.4)

These constraints are that fu(xu) must integrate to zero with respect to the marginal

of w on xu in each coordinate direction i in u, for all values of xu\i.

Appendix B provides regularity conditions necessary for the existence and unique-

ness of solutions to this generalized criterion. Corollary B.2.1 states that a decompo-

sition is unique for w(x) that has support on an open set in Rd. In fact, considerably

weaker conditions are sufficient and I use these in the approximation schemes in §7.2.

In the machine learning spirit of creating acronyms, I have titled this generalization
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the Functional ANOVA for Measures of Extrapolation, or FAME.

A natural measure to choose in this case is the density function p(x) governing the

underlying predictor variable distribution. However, the existence of extrapolation,

particularly in high dimensional situations, may suggest a function with support closer

to the actual points observed. Even if such points are generated from a product

distribution, in very high dimensional cases for a specific training sample, large holes

can still appear in predictor space. It may be desirable to place lower weight in those

regions. CERT provides one algorithm for doing this in a principled manner.

Note that the conditions (7.2) guarantee orthogonality for the standard Functional

ANOVA. In this case some orthogonality is lost, and hence the variance decomposition

is also lost. However, the new conditions (7.4) do provide hierarchical orthogonality:

∀v ⊂ u :

∫
fu(xu)fv(xv)w(x)dx = 0 (7.5)

since

∫
fu(xu)w(x)dx−v = 0 ∀xv.

Equation (7.3) does not easily satisfy the criterion of comprehensibility. Further,

it seems unrealistic to attempt to estimate all 2d effects at once. However, using (7.5),

we can write an optimization criteria for a single effect, defining fu(xu) as

argmin

gu(xu), {gv(xv)}v⊂u,

{g−v(x−v)}v⊆u

∫  gu(xu) +
∑

v⊂u gv(xv)

+
∑

v⊆u g−v(x−v)− F (x)

2

w(x)dx

∣∣∣∣∣∣
u

(7.6)

with argmin{ai}n
i=1

J(a1, . . . , an)|k denoting the kth component of the optimal vector

a1, . . . , an. Here the {g−v}v⊆u are subject to the relaxed conditions
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∫
g−v(x−v)w(x)dx−u∪v = 0.

These replace the set of conditions given for each v ⊆ u. Effectively,
∑

v⊂−u gv is

subsumed into g−u, treating x−u as a single variable, and the constraints are relaxed

accordingly.

Letting the size of u be k, the number of terms has been reduced to 2k+1. Moreover,

the effects can be grouped into two. Firstly, a projection,
∑

v⊆u gv(xv) onto xu that

we would like to visualize and secondly, the remaining terms which act to control

the effect of covariance. In this setting there is now a comprehensible optimality

criterion: find the best fit of F on the space of functions with no higher interaction

than u. Alternatively, like multiple linear regression, this is the effect for u when the

correlation with other effects is taken into account. Further, an examination of the

form of the functions being optimized in (7.6) shows that if F really does have an

additive component Fu, then the criterion must exactly recover F , and therefore Fu.

Finally, w guarantees that we do not measure spurious effects, the four criteria that

were originally set out have been satisfied.

7.2 Product δ-measures and Pointwise Estimation

Equation (7.6) now presents a feasible number of terms to be estimated, at least

for small k. However, 2k nuisance functions of dimension up to d − 1 still need to

be estimated. The important realization here is that there is no interest in those

functions except to control for the dependence structure in the underlying predictor

space. It is therefore possible to confine ourselves to estimating all the terms above

only at a carefully chosen set of points.

Attempting to estimate these functions at a single point is, nominally, an under-

determined task; assuming the points to be distinct in all dimensions, the function
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can be recovered exactly at those points using only one predictor. However, the con-

ditions found in Theorem B.2.1 provide an approach: if the functional effects are

estimated on a grid of points, there is a unique decomposition.

Taking a grid with uniform weights is equivalent to approximating w by a product

of empirical marginals - themselves sums of δ-measures. This is exactly the approach

used for Partial Dependence Plots in Chapter 6. Now, however, each point in this

grid can be given a differential weight according to w. Corollary B.2.2 states that so

long as no point is left as the sole point with non-zero weight in any direction of the

grid, (7.1) translates into a solvable linear system.

7.2.1 Estimation for Visualizing Effects

Start with a set of N points {xi}Ni=1 in Rd generated by a uniform distribution.

These are generating points for a grid comprised of:

{zk}
N{1,...,d}
k=1 = {xi1,u1 , xi2,u2 , . . . , xik,uk

, xj,−u}Ni1,...,ik,j=1 (7.7)

where x−u,j is again treated as a single value. Appendix A gives a comprehensive

account of the notation I use to describe grid values. (7.6) now translates into the

problem of finding

argmin
gu(zi,u), {gv(zi,v)}v⊂u

{g−v(zi,−v)}v⊆u


N{1,...,d}

i=1

N{1,...,d}∑
i=1

w(zi)

 gu(zi,u) +
∑

v⊂u gv(zi,v)

+
∑

v⊆u g−v(zi,−v)− F (zi)

2

(7.8)

under the constraints
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∀v ⊆ u, ∀j ∈ v, ∀k ∈ {1, . . . , Nv} :∑Nj

i=1

(∑N−v

l=1 w(zi,j, zk,v\{j}, zl,−v)
)

fv(zi,j, zk,v\{j}) = 0

∀v ⊆ u, ∀j ∈ −v\ − u, ∀k ∈ {1, . . . , N−v\{i}} :∑Nj

i=1

(∑Nv

l=1 w(zi,j, zk,−v\{j}, zl,v)
)

f−v(zi,j, zk,−v\{j}) = 0

∀v ⊆ u, ∀k ∈ {1, . . . , N−v\−u} :∑Nu

i=1

(∑Nv

l=1 w(zi,−u, zk,−v\−u, zl,v)
)

f−v(zi,−u, zk,−v\−u) = 0.

In order for this sampling scheme to provide reasonable approximations, I assume w

to be a density. This is sufficient for all practical purposes.

Setting the gradient to zero, this results in a very large, very sparse, weighted

linear system. To provide an idea of the practical size of the system, using a grid

with N points in each dimensions, this system has Nk equations in
∑k

j=0

(
k+1

j

)
N j

unknowns and a further
∑k

j=1

(
k+1

j

)
N j−1 constraining equations. The effect values are

the parameters of the system to be estimated and the values F (zi) take the place of the

response. Solving such a system is computationally feasible for small k and moderate

N . Given that we are interested in visualizing effects of order only 1 or 2, this is quite

adequate. Note that where w(z) is a product of univariate functions, this system

exactly reproduces the equivalent estimation of Functional ANOVA effects, using the

zi as evaluation points. This can be seen by taking the grid of z’s as point masses

which form a product distribution. Theorem 7.1.1 then gives that the Functional

ANOVA on this grid – exactly the empirical estimate of Functional ANOVA effects

– solves (7.8).

The structure of this linear system allows for somewhat larger systems if an iter-

ative method is employed. For large N or k, even storing XT X can be prohibitive.

However, Xβ and XT y can both be calculated efficiently using a sparse matrix rep-

resentation of X. In this setting, conjugate gradient methods, which only rely on
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the multiplication XT Xb can provide a significant storage saving. See, for example,

[23] for a description of these methods and their properties. In Appendix C, I pro-

vide a description of the sparsity structure of the system and a calculation of the

computational complexity of the problem.

7.2.2 Variations and Extensions

The full product grid on Nk points is also not necessary. Observe that identifi-

ability only requires 2k points on a product grid under the given constraints. The

constructions above used grids of N points in each direction, but it is equally possible

to use more points in some directions than others. A larger number of points in the

variables x−u may help reduce the variance of effect estimates, for example. The

computational complexity of finding a solution can also be reduced significantly by

taking the original set of points in smaller groups and only forming products among

those groups.

A division into groups of grids decouples the estimation problem unless some

points are shared between grids. This increases the amount of noise in the estimate

of any individual function value, necessitating a smooth of the estimates when they

are plotted. A simple alternative to this would be to employ a finite element approx-

imation for the effect of interest, allowing the finite elements for the other terms to

occur precisely as δ-functions1. This would allow significant computational saving in

both requiring fewer finite elements than observations in the effect of interest, and

allowing a more aggressive grouping of points in the control effects. Quasi Monte

Carlo techniques can also be employed to produce a set of points that may reduce

the variability of these estimates.

1The original estimation scheme is effectively this, but using δ-functions for the finite elements
in the effect of interest as well.
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7.2.3 Estimation for Interaction Importance Scores

While first and second order effects are sufficient for visualization, diagnostic tools

for ANOVA structures such as those found in Chapter 3, do require importance scores

to be evaluated for higher order interactions.

In this context, however, much less information is sought. The only quantity of

interest is:

σ̄2
u = min

{f−i}i∈u

∫ (∑
i∈u

f−i(x{−i})− F (x)

)2

w(x)dx.

That the terms on the right hand side are not uniquely specified is not of concern so

long as the minimum exists and is estimable. Finding a minimum is generally possible

for inconsistent linear systems such as this, even when that minimum not unique. In

this case, with a noticeably larger k, the sparsity structure of the resulting linear

system can be exploited. It is known that standard conjugate gradient algorithms

may not converge for inconsistent systems. However, iterative variants for producing

a solution do exist; see, for example, [5]. Again, the regularity of this system leads to

the expectation of both fast convergence and very cheap storage.

Using the same estimation scheme as above, there are now
∑

i∈u N−i unknowns

and one can again group points into smaller sets of product measures: each requires

at least 2k points. Using a small grid will naturally have a large amount of noise

associated with the estimate. The importance estimate will be averaged across a

decoupled collection of grids in this case, however, so some variance reduction can be

achieved. This simplification allows a test of noticeably higher-order interactions, up

to say k = 7. This, again, can be argued to be sufficient: there is little understanding

to be gained by the knowledge that a function is the sum of some intrinsically 8-or-

higher dimensional components.

An alternative estimation of effect importance is to simply fit an additive model
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with ANOVA structure given by (3.2) to the training data, taking predicted values

from the function as a response. The loss associated with this approximation is then

an approximation to the L2CoE for FAME. A rough approximation with additive

models may provide a more computationally efficient solution than the numerical

linear algebra above for large interactions.

7.2.4 Non-Uniform Sampling Schemes

Using a base set of uniformly distributed points as the seed for the product δ-

measure above suffers from the problem of poor representation in large dimensions. In

particular, if a measure that is zero in large parts of predictor space is being used, there

is a serious risk of leaving the normal equations for the empirical effects undefined by

giving weight zero to too many rows. By effectively removing a large number of points

from the estimation, the amount of noise associated with the estimate is increased,

even when a solution can be found.

An immediate solution to this problem is to try to concentrate the points on

regions of high density and adjust w(x) accordingly. Since the grid points must lie

on a product distribution, using the original data (or some subset of it) as a seed and

dividing w(x) by the product of its marginals is a first solution. This can be justified

as being optimal in the sense that the product of marginals is the closest product

distribution to the data in a Kullback-Leibler sense [14].

There is a disadvantage to this approach in that we may desire to see the effect

plotted at points more uniformly distributed than the empirical marginal of the di-

mensions, xu, in question. In this case, taking a uniform sample, or uniformly-spaced

points only in xu may be appropriate. A product distribution can then be formed

between these points and the empirical marginal in x−u. The measure then needs

to be divided only by the marginal on x−u, treating this collection of variables as a

single variate as in (7.6).
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Specific models of distribution of the underlying training data can point to al-

ternative, more efficient, estimation schemes. Mixture of Gaussian models, or more

general mixtures of products – for example, the CERT models of Chapter 5 – can be

used to generate a product δ-measure for each term in the mixture and these can then

be employed to provide identifiability at both lower computational cost and avoiding

using rows that are given zero weight; in fact the weights given to the least squares

equations would all be equal.

A similar scheme can be employed using a clustering of the training data: assuming

that the underlying distribution makes up a product measure in each cluster. The

points produced using this assumption would need to be appropriately weighted to

maintain the prior weight in each cluster. A marriage of these two proposals might be

found using the tree-based methods in Chapter 5. Here, the density model takes the

form of a mixture of (possibly overlapping) uniform distributions. The training data

in each component of this distribution can then be turned into a product measure,

with the same weight given to each point in a single component, adjusted to maintain

the over-all weight in that component. If we use overlapping regions, points should

be chosen to be shared between the grids in each region: estimating on an individual

region will bias the result and without coupling the grids, this will result in an offset in

the effect estimate for each grid. The advantage of this approach is that it allows the

distribution of training data within a component to modify the distribution toward the

original δ-measure (in a Kullback-Leibler sense) while at the same time maintaining

confidence in the function values at the points of measurement. Any point formed

by taking a product δ-measure within one of the hyper-rectangles defining a uniform

component must also be in that hyper-rectangle.
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7.3 Confidence Intervals

Two distinct estimates of uncertainty are desirable here. Firstly, and most simply,

there should be an estimate of Var(F (x)|xu); the conditional variance of the function

at that point, providing the amount of functional variation not captured by the effect

fu. Secondly, there should be some estimate of the variability of the effect estimate

due to sampling.

The decomposition used here is chosen to reflect the specific training data and

therefore it is hoped that sources of model variability due to resampling of errors at

the given data points is small. Large effect variability under resampling of the errors

would indicate significant model instability, reducing the confidence that would be

placed in interpretational diagnostics. The same is also true of a straight bootstrap -

resampling the training data entirely. This is much more likely to be a source of model

instability with the same consequences for interpretation. This form of resampling

by itself, then, is sufficient. The basics of doing such resampling are simple and have

been dealt with, for example in [28], and are not covered further.

7.3.1 Conditional Variances

The first quantity of variance that is of interest

Var(F (x)|xu).

This can be used to provide a confidence interval to be displayed with the effect

fu(xu). This is an indication of how much functional behavior is not being accounted

for by that effect. The estimate for this can be calculated directly by the weighted

empirical variance:
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σ2
F (xu) =

∑N−u

i=1 w(xu, x−u,i)

(
F (xu, x−u,i)−

∑N−u
j=1 w(xu,x−u,i)fu(xu)∑N−u

j=1 w(xu,x−u,i)

)2

∑N−u

j=1 w(xu, x−u,i)
(7.9)

for x−u,i sampled uniformly on x−u space - for example, from the product grid defined

in (7.7).

Note that an asymmetric interval can be created by taking an ordering of F (xu, xi,−u),

and using this to create an empirical lower and upper 5% bounds based on the weight∫
w(xu, xi,u)dxu at each of these points. This is a more appropriate quantity to pro-

vide in this context. However, the estimate of σ2
F (xu) is used in the estimates below

and provides a single value for plotting contours of bivariate conditional variance.

Unlike conditional variances calculated for product measures in the standard Func-

tional ANOVA, having an additive function does not result in a constant conditional

variance. However, the variances defined here more accurately reflect the true func-

tional variation with some particular subset of predictors instantiated.

7.3.2 Sampling Variation

The variability in the Monte Carlo approximation can be analyzed in a similar

fashion to the standard Functional ANOVA. Observe that the estimate of an effect

can be written

f̂u(xu) =

N{1,...,d}∑
i=1

αiF (zi)

where zi are values on a grid generated by from a uniform sample. Note that

xi,u = xu for some of the points. Treating each F (zi) as independent, Var(F (zi)) =

Var(F (z)|xu) = σ2
F (xu) if xi,u = xu and σ2

F otherwise. Each σF (zu) can be calculated

from (7.9) and the resulting estimate is
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Var(f̂u(zu)) =

N{1,...,d}∑
i=1

α2
i Var(F (zi)),

which can be calculated by replacing the result vector in our linear equations with a

vector of variances.

It would not be computationally feasible to solve a large set of equations for each

point at which sampling variation is of interest. However, when we are interested in

some subset {xj,u}j∈M – for example, the points at which the effect is being plotted –

these could be treated as jointly fixed and the appropriate conditional variance could

be used any place that xi,u = xj,u for some j ∈M .

Although it produces an estimate, this is clearly a very naive approach. In gen-

eral, F (x1,u, x1,−u), F (x2,u, x2,−u) and F (x1,u, x2,−u) cannot be said to be all indepen-

dent. This dependence also an issue in variance estimates for the standard Functional

ANOVA evaluated on a product grid. Producing a better description for the covari-

ance structure of function values evaluated on a product grid generated from a uniform

random sample is the object of ongoing research.

7.4 Demonstrations

Here I demonstrate the viability of the decomposition that I have proposed. In

particular, I start out by demonstrating that we can recover additive components

while ignoring spurious effects in a region of extrapolation. This is true even if the

additive components share variables.

The example that we present is defined on the unit cube. I take as a function

F (x, y, z) = xy + xz + yz + 5I(x > 1/2, y > 1/2, z > 1/2) (7.10)

and in this case the last term is considered to be a spurious effect of the learning

procedure; I have chosen an indicator function to have particularly visible contours.
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To evaluate the Generalized Functional ANOVA, a sample of ten uniformly dis-

tributed points were drawn, and the product distribution of the marginals of these

points taken as in (7.7). Figure 7.1 presents contour plots of the second order effects

for this function defined on three different measures. The first of these is exactly

the unit cube providing the standard Functional ANOVA effects and the distortion

due to the spurious term is evident. The second sets w(x) = 0 in the upper corner

from the cube - exactly that part of the cube in which the spurious effect occurs.

Here the desired components are recovered exactly. The final distribution further re-

moves all the upper corners from each of the faces of the cube, leaving an “L”-shaped

marginal distribution in each pair of variables as was found in Figure 4.1. Here the

bivariate effects are again recovered, apart from in the top corner where they are left

appropriately undefined.
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Figure 7.1: Bivariate effects for (7.10) defined on three successively more compact
measures, the marginal distribution of each is given by background shading.

To provide a real-world demonstration of the effects, the Support Vector Machine

used to provide the plots in Figure 2.4 has been employed again. Here, I have used

the CERT model in Chapter 5 to provide an estimate of the density of the predictors

for the Boston Housing Data. This has then been used as a density in the Generalized

Functional ANOVA and I have taken a set of 10 uniformly distributed points on the

dimension of interest in each case, and 20 randomly sampled training points for the
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noise dimensions. The density has then been divided by the marginal distribution

on the noise variables calculated from the CERT tree in Figure 5.3. Figure 7.2

compares the standard and generalized effects for this function on the variables “dis”

and “lstat”. We observe that the effects are similar to the partial dependence plots.

However, “lstat” seems to be exaggerated in the partial dependence, while the dip in

“dis” is stronger for the FAME representation.
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Figure 7.2: The effect of a regression Support Vector Machine trained on the Boston
Housing Data for variables “dis” and “tax”. Generalized effects are given by solid
lines, standard effects by dashed.

Running VIN using the FAME criterion on a grid with 10000 points and taking

an average of 10 repetitions to compensate for the smaller sample size reduced the

set significant variables from 11 to 7: “nox,” “rm,” “age,” “dis,” “tax,” “ptratio” and

“lstat” with the only significant interaction being “rm”-”lstat”. “rm”-”ptratio” and

“rm”-”tax” were very close to the significance threshold while all other interactions
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Figure 7.3: Variable Interaction Network for a Support Vector Machine learned on
the Boston Housing Data using the FAME criterion.

had very low scores. Including these gives the VIN plot in Figure 7.3. A generalized

additive model in these effects doubled test error, indicating that some expansion in

model structure is warranted. Theorem 3.5.1 states that this algorithm only recovers

the components necessary to fit the original function well and this does not guarantee

sufficiency. There are likely to be a number of different ANOVA structures that obtain

good prediction rates, all of which contain these components.

7.5 Conclusions

FAME represents a functional decomposition that satisfies the criteria I set out

for good interpretational diagnostics. It provides a comprehensible quantity defined

through an optimality criterion that guarantees that the function is fit as aggressively

as possible without compromising additive structure. Further, I am able to do this

in a way that avoids the need to evaluate functions at points of extrapolation and

is also able to reduce the weight given to the function in regions of low probability

mass.
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This has been achieved through a generalization of a global optimality criterion

and I have provided efficient techniques to solve it. Further, I have provided confi-

dence intervals for the estimated quantities and ways to calculate these. Appendix

C provides an account of an efficient numerical implementation of these procedures,

particularly taking advantage of the sparsity of the systems involved. A greater un-

derstanding and estimation of the orthogonality structures within the decomposition

would also be helpful, as would a deeper treatment of uncertainty.



Chapter 8

Conclusions and Conjectures

This thesis has sought to produce general methods for diagnostics in machine

learning that are designed to be compatible with the output of any learner. I have

focused on understanding system dynamics in terms of the relationship between the

response and predictor variables. In this context, the Functional ANOVA represents

a natural construction, providing effects that are comprehensible, optimal and which

preserve additivity.

These three properties allow a diagnostic in the form of the “full grid of plots”

that jointly provide a representation of functional behavior that as closely (in an L2

sense) fits the true function using only first order interactions.

Variable Interaction Networks

The Functional ANOVA effects produced by a full grid of plots, do not account

for higher-order effects. Specifically they do not indicate which effects are important

and how much functional behavior is captured (or missing) from bivariate plots. The

work in Chapter 3 provides this diagnostic. The significance of an interaction can

be judged by the cost of leaving it out of the Functional ANOVA. Thresholding

significance at some predefined ε, the set of significant effects can then be represented

101
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as a hypergraph, providing an addition to the full grid of plots from Chapter 2.

These effects can be found hierarchically with an estimation scheme that takes O(N)

function evaluations.

The Functional ANOVA is normally defined on a uniform distribution, although

it can easily be extended to any product measure. Chapter 3 goes somewhat farther

and uses the calculation of partial dependence functions to mitigate the distortion of

the underlying predictor distribution. Doing this, however, removes the base measure

from the Functional ANOVA and in what sense, if any, partial dependence functions

are jointly optimal as descriptors of non-additive functional dynamics is not clear.

Empirically, the ANOVA structure of a learned prediction function can vary no-

ticeably when its learning parameters or training data is perturbed. Figure 8.1 shows

the VIN plots for two 13-26-1 networks trained to convergence on the Boston Housing

Data from different starting parameters. There are substantial differences in struc-

ture. This is partially due to the distortion caused by the independence assumptions

used in the calculation of partial dependence functions. Even though they avoid using

a full product measure, these calculations can move substantial probability mass into

regions of extrapolation. Chapter 5 demonstrated that learned functions can exhibit

large variability at points of extrapolation. If this is the case, using the methods

described in Chapter 7 may provide some stabilization of these diagnostics. Figure

8.2 shows the same plots calculated with the FAME criterion. These are more similar

and more sparse than Figure 8.1. The extent of variability is difficult to quantify

– I am not aware of any measure of the variability learned structure in hierarchical

models.

The VIN algorithm that I advocate finds those interactions that are necessary

to recover the original function up to an L2 error of ε. These are not necessarily

sufficient, however; employing FAME as a criterion to produce Figure 7.3 found an

ANOVA structure that was too restrictive to model the data well. An upper bound
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Figure 8.1: VIN plots for two 13-26-1 neural networks trained to convergence on the
Boston Housing Data.

Figure 8.2: VIN plots for the same neural networks as Figure 8.1 but calculated with
the FAME criterion.

on the set of minimal ANOVA structures that recover F to within ε1 could be found

by recursively searching over all structures and adding a structure as soon as its joint

L2CoE drops below ε. This would involve much more computational effort, however,

and is unlikely to produce an interpretable result.

Alternative Diagnostics

There are diagnostic questions that the Functional ANOVA does not address.

Individual predictions are not explained by low-order effects. The explanatory power

1By minimal, I mean U that recovers F to within ε, but that V doesn’t for any V ≺ U.
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that rules have in trees is difficult to mimic for general methods. Rules can be

thought of as a specific example of an algebraic formulation of a function. Few

other formulations rarely have the same interpretive value as rules, however. One

approach to rule generation is to build a tree on a very large simulated data set with

the corresponding predictions as a response. This suffers the disadvantages of both

producing many rules and losing accuracy.

The usefulness of the Functional ANOVA is also limited when there are known

underlying processes generating both predictors and response. Such structures are

found in functional data, for example. This typically occurs when data are collected on

a process evolving over time and the predictor variables are measurements of various

aspects of the system. In this setting, functional effects for these measurements

entirely miss the temporal nature of the data and machine learning carried out naively

with these predictors is likely to perform poorly. In this situation, the rate of change

of variables can have important explanatory power and such systems are naturally

described by differential equations, an approach begun in [26].

There are other settings in which the effect of a predictor is not a quantity of

interest. This is the case, for example, in image processing in which the change

associated with a particular pixel is not particularly interpretable. In other very

high dimensional situations, examining the effect for individual predictors is likely to

swamp our cognitive abilities. These settings often rely on a more comprehensible set

of lower dimensional bases; principal components are often used in Natural Language

Processing, for example. When this is the case, effects for these bases can provide

interpretable diagnostics.

Confidence and Extrapolation Representation Trees

The central theme of this work has been the problem of extrapolation. The com-

ments above about the variability of ANOVA structure mirror the general problems
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associated with extrapolation described in Chapter 4. There I showed that extrapo-

lation can distort the Functional ANOVA picture of functional dynamics. In realistic

settings, this distortion can be very bad.

CERT provides a first tool to deal with extrapolation: discovering where it oc-

curs. Extrapolation is generally not formally defined. I give it as the classification

probability of the data distribution against a uniform distribution on the same range.

The uniform distribution makes a natural hypothesis distribution for outliers, as well

as a null distribution when we think about the number of points in a given number

of dimensions. This classification probability then needs to be estimated, and CERT

represents one of the only situations in which I advocate a specific methodology. Trees

are natural in this context for two particular reasons:

1. Trees provide a rough representation of the data distribution as a mixture of

uniform distributions. This can easily be refined to estimating a product distri-

bution in each leaf, since each product distribution will not spread mass outside

its leaf. I suggest ways in which this may be useful in the estimation of effects

in Chapter 7.

2. The tree glyph represents an interpretable estimate of density. Moreover, it

provides a diagnostic tool for functional dynamics: we can identify areas of low

data density and determine if functional behavior in these areas makes predicted

values suspicious.

Beyond the representation, both graphical and probabilistic, that they provide, trees

can also naturally incorporate exact distributional information about the uniform

distribution. It is less obvious how to do this for other classifiers. Incorporating this

information into the algorithm leads to larger, more accurate and more stable trees.

As with CART, the use of axis-oriented splits can be limiting when the true density

has linear association structure. This limitation can be seen in the experiments in
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§5.4. I have not implemented the linear combination split strategy available in CART,

but expect that it would substantially increase performance on data sets that exhibit

linear dependence. Calculating the volume of hyper-polygonal regions is a non-trivial

task here. However, a Monte Carlo strategy used to calculate the score for each split

may be used here. Since uniform data will be drawn separately for each split, the

problems of separability associated with the Monte Carlo strategy for ordinary CERT

should not arise.

I have shown that CERT provides a viable extrapolation detection procedure

and suggested ways in which this could be turned into a diagnostic of concept drift

in predictor variables. Any outlier detection procedure could be used here. What

CERT provides above a generic procedure is an indication of the direction of drift: if

a record of the amount of data falling in each leaf of the CERT tree is kept, the trends

on each leaf provide an indication of how the distribution of predictor variables shifts

over time. This may be best demonstrated in practice.

While I have advocated the use of trees as an extrapolation diagnostic, the mea-

sure of extrapolation could be estimated with other methods. Using the strategy of

generating Monte Carlo points from a uniform distribution, any classifier could be

employed as an estimator. Experimental results suggest that this strategy can yield

results with insufficient resolution in trees and this is likely to be the case for other

methods. One possible work-around is to use an ensemble of classifiers, each learned

with a different Monte Carlo data set. This could be bagged. CERT itself could be

bagged or boosted. [29] provides a method for boosting density estimation. This is

an alternative strategy to boosting classifiers that might also work for CERT.

Data-Augmented Regression for Extrapolation

When learning is undertaken with a flexible approximator there is no reason to

trust the predictions given far away from data. Machine learning, of necessity, makes
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an assumption of some form of smoothness – depending on the specific method – in

the true target function. This smoothness allows prediction to extrapolate to points

nearby the training examples. However, as points get farther away from training data,

assumptions of smoothness still allow a very large variability. Making predictions

at such points implicitly invokes a Bayesian prior that the true function behaves

according to the peculiarities of the learning procedure used. Almost no learners

have model assumptions or search strategies that are designed with extrapolation as

anything more than an afterthought. They are therefore unlikely to imply a sensible

prior distribution on prediction values.

The flexible nature of machine learning procedures does, however, allow their prior

to be altered stochastically. I suggest that it is sensible to view a target function as

being drawn from a random field prior with a known, stable, null model as a mean.

Unless strong prior knowledge is available, an appropriate null model is constant. A

universal approximator can then be influenced to use this prior model by generating

data that is uniformly distributed across predictor space, giving it the response from

the null model and appending it to the training data. I have suggested some general

rules of thumb concerning how much uniform data is necessary and how to choose the

relative weight of uniform and real data. These are computationally costly, however;

the rule of thumb for the amount of uniform data required is likely to be frequently

infeasible. More realistic base estimates for these parameters would significantly

speed up the search process. These may need to be tailored to the particular learning

method being used.

The use of DARE does not need to be restricted to universal approximators. In the

case of linear regression, DARE corresponds to a stochastic version of ridge regression

and could be used in more general GLMs. In fact, the DARE paradigm provides a

new analysis of regularization methods in parametric situations; it is reasonable to

ask what prior on predicted values is induced by the priors on the parameters. In

many situations, we have more intuition about what predictions should look like than
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where parameters should lie. In the case of logistic regression with a ridge penalty,

for example, the predicted values implicitly have an inverse logistic Gaussian prior.

In the naive implementation of DARE, the variance of the random field prior is

assumed to be the same as that of the error distribution on the training examples.

This may be reasonable in many situations. It may also be unreasonable - for example,

when we expect the observation errors to be over-dispersed. In this case a different loss

criterion should be used for the errors measured on the real data points and those on

the uniform points: Huberized on the former and Gaussian on the latter, for example.

Doing this would necessitate a significant alteration of the learning procedure. In a

gradient boosting situation, described in [10], however, the implementation of separate

loss criteria for different observations only requires the gradient calculation for each

observation to be changed.

Another tantalizing suggestion that I have not to followed up is the use of exact

distributional information in trees in the same manner as CERT. So long as a constant

base model is used (or one that is analytically integrable on hypercubes), it is again

possible to provide an exact loss calculation for the prior distribution for any loss

function. This can then be added with the appropriate weight to all the split scores.

Like the use of specific points in ridge regression this would remove the stochastic

component of DARE. Such trees can, of course, then be used in any ensemble method

for trees.

A final area of interest is in creating confidence intervals for functions. The be-

havior of DARE resembles Kriging, which is explicitly based on a Gaussian random

field prior and can similarly incorporate a null model. Besides the regularization and

extrapolation benefits already described, Kriging provides confidence intervals for its

predictions. For Kriging, these intervals revert to intervals based on the prior variance

away from training data. In DARE, the weight on Monte Carlo data points corre-

sponds to an implied prior variance. An initial approach to doing this would be to use

the simplistic approach in §6.4. Let the implied prior variance be 1/γ – exactly the
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variance implied for a Gaussian prior – and suppose a variance for measurement error

to be estimated at σ2 (presumably smaller than 1/γ). Then an over-all predictive

variance could be given by

P (D|x)σ2 +
1− P (D|x)

γ
.

This does not take into account the variability of the model fitting procedure, however.

In Kriging, the variogram plays a critical role in governing the trade-off above and

the measure proposed here is quite naive.

The Functional ANOVA for Measures of Extrapolation

My interest in the problem of extrapolation began with a concern over the distor-

tion of diagnostic tools caused by that phenomenon. FAME, the final construction in

this thesis, provides a generalization of the Functional ANOVA to non-product mea-

sures. In doing this it provides the same optimality and additivity properties of the

standard Functional ANOVA without requiring evaluation at points of extrapolation.

As with multivariate linear regression, the effects generated from FAME have a stan-

dard interpretation: they are the best fit of the prediction function, when the other

effects are taken into account. All the functional diagnostics described in Chapters 2

and 3 can be used with FAME instead of the Functional ANOVA and in doing this

the problems of extrapolation can be avoided.

FAME does present significant estimation challenges. I have proposed initial meth-

ods for meeting these based on evaluation on a grid of points. This rapidly becomes

numerically difficult, although it is feasible for basic diagnostics. There are a num-

ber of sub-issues that could be further explored: the use of multiple products and a

mixture-of-products representation to better target areas of large density, smoothing

the effects of interest by using a finite element basis for that effect with point masses

for the others. The interaction between finite element methods and the distribution
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point masses also needs to be fleshed out. There are further issues in providing esti-

mates of uncertainty and variance for FAME. These stem mostly from the (unknown)

correlation of function values evaluated on a randomly generated grid. Whether rea-

sonable estimates of these correlations can be found and used is a matter of on-going

work.

Classification and Transformation

This thesis has concerned itself almost exclusively with the problem of regression –

predicting a real-valued quantity. As noted in §2.4, there are standard techniques for

turning regression effect estimates into classification estimates. These are often done

on a logistic scale instead of a probability scale. This work has also not considered

the issue of function transformations. f(x) may not be close to additive, but some

transformed version, G(f(x)), may be. It may also be that we can write

f(x) = h1(g1(x)) + . . . + hk(gk(x)).

Projection pursuit regression [11] is a specific case of this with the gi being linear

in x. Either transformation may prove useful and the linear direction of greatest

variation of a function is another diagnostic aid. In general, however, searching for

such transformations is likely to over-complicate the diagnostic. A number of basic

transformations might be useful - taking a log of the prediction will find multiplicative

effects and multiplicative structures. Nonetheless, such transforms should be chosen a

priori and with some care - the result of transforming a predictor effect by a function

that is not additive in the set of effects shown is not a mental task that is easily

carried out.
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Final Thoughts

This work presents the first exposition of the connection between extrapolation

and diagnostic tools of which I am aware. I have strengthened current diagnostic

tools in producing a representation of interaction importance. I have provided an

interpretable density estimate and used it to evaluate function behavior at points

of extrapolation. I have also discussed principled methods for making prediction at

points of extrapolation. Finally, I have provided a framework in which diagnostic

tools can be provided without requiring the function to be evaluated at points of

extrapolation.

I have carried out this work with the intention that it be generally applicable

to any black box function, whatever the underlying model formulation. There are

numerous machine learning methods in existence, and undoubtedly more will be pro-

duced. All the diagnostic tools that I have presented here can be employed to aid the

understanding any function and are not restricted solely to the out put of a learning

procedure. In CERT and FAME, I have suggested estimation schemes. In both cases,

these are derived from a general quantities that are themselves original to this thesis

and may be susceptible to alternative estimation techniques.

Good diagnostic tools not only provide scientific understanding of the system in

question, they also allow us to create better models that rely on stronger assumptions

to improve both the accuracy and the stability of predictions. The first and most

obvious use of diagnostics is in feature selection. Reducing the dimensionality of

the predictor space simplifies models and removes a source of variance. It is also

likely to substantially reduce the amount of extrapolation in a system. There are

a host of predictive procedures already developed for machine learning, all of which

are improved by removing irrelevant predictors. I suspect that a large source of

predictive improvement will be in methods that have structural model assumptions

and in knowing which assumptions to use.



Appendix A

Abuses of Notation

Because of the complicated nature of some of the general calculations relating to the

functional ANOVA, some notational shortcuts have been employed.

General Analysis

Rd d-dimensional Euclidean space.

L2(Rd) The set of square-integrable functions (with uniform measure) on Rd. L2 will

be used when the space is clear.

L2
w The set of functions that are square-integrable with respect to the measure

implied by w.

Extrapolation Probabilities

P (D|x) Represents the probability that x was generated from distribution D when the

choice is D or U with assumed prior γ. I.e.

γP (x|D)

γP (x|D) + (1− γ)P (x|U)

In the case of γ = 1/2, this is exactly Extrap(x).
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The Functional ANOVA:

u, v Subsets of the indeces 1, . . . , d.

ui The ith element of u, under some ordering.

−u The complement of u.

u\v The elements of u not in v.

xu Those variables whose indeces are in u.

xi The ith example of the predictor variables in a set of examples.

Where u is a singleton giving the kth index, I write x{k}.

xi,u The values of xu in the ith example. The index of the example always precedes

that of the variable.

U A collection of u ⊂ {1, . . . , d}. By convention, for u, v ∈ U, u 6⊆ v and v 6⊆ u.

≺ V ≺ U, states that for all v ∈ V there is some u ∈ U for which v ⊆ u and

for some v ∈ V there is a u ∈ U such that v ⊂ u. v ≺ U is equivalent to

V = {v} ≺ U.

Grids

I assume that in each coordinate k, the grid takes Nk distinct values {xi,k}Nk
i=1.

zi,u i is regarded as a multi-index of the size k - the cardinality of u:

zi,u = (xi1,u1 , . . . , xik,uk
)

Nu Indicates
∏

k∈u Nk.

{zi,u}Nu
i=1 Is taken to enumerate over all Nu values of the multi-index i associated with u.
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Existence and Uniqueness

of FAME Solutions

In order to be precise in the discussion of solutions to FAME, we must note that

no solution will be well defined away from the support of the density w(x). I therefore

assume that any function discussed is a representative of an equivalence class defined

by the values that the function takes on the support of w. For definiteness, I assume

that all functions are zero outside that support.

B.1 Existence

Theorem B.1.1. For any f ∈ L2
w, a FAME decomposition exists.

Proof. The set of functions

G =

g : g =
∑

v⊂{1,...,d}

gv(xv)


where {gv}v⊂{1,...,d} satisfies the conditions (7.2) is a closed subset of L2

w. This is clear:

for any element g ∈ G take an ε ball centered on g in the L2
w metric. Then g + εt
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is within this ball when t is the independent multivariate Gaussian centered on the

origin and truncated by by the support of w.

Since f ∈ L2
w, we have, by the triangle inequality

||g||2w ≤ ||f ||2w + ||f − g||2w

and the minimizer must be at least as good an approximate to f as 0, so we can

bound the norm of a minimizer by 0 and 2||f ||2w. Call G′ the restriction of G to the

||f ||2w ball about zero.

Let Jf [g] be the criterion (7.1) applied to g. By another triangle inequality, Jf [g]

is continuous in g and bounded by ||f ||2w and 0.

Since Jf is continuous and G′ is closed and bounded, the image of G′ under Jf is

closed and bounded and is therefore a compact set of R. A minimum therefore exists

in this set and its inverse is in G′.

B.2 Uniqueness

The less obvious result is the uniqueness of the FAME solution. The conditions

(7.2) are designed to ensure that the solutions are unique. The challenge here is to

find regularity conditions on w under which this is successful. The idea of grid closure

below directly motivates the approximation scheme in §7.2.

Definition B.2.1. A set Ω is grid closed if for any x ∈ Ω, there exists {yu 6=

x}u⊂{1,...,d} ⊂ Ω such that yu
u = xu, u ⊂ {1, . . . , d}.

Definition B.2.2. A function w is said to be grid closed if its support, Ωw, is grid

closed.

I have used the name “grid closed” to suggest the existence of a grid in Ω for every

point x ∈ Ω. In fact, a full grid is not necessary and it is possible to define fractal
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sets that are grid closed but which do not contain any grid. Nonetheless, for practical

purposes we will use a full grid. The next lemma is obvious and given without proof.

Lemma B.2.1. Any grid or union of grids is grid closed.

The point of grid closure is that it ensures that functions of one variable must be

constant with respect to other variables. This property provides the next lemma.

Lemma B.2.2. Let w be grid closed. For any {gu}u⊂{1,...,d} 6= 0 ∈ L2
w that satisfy

the integral constraints (7.2), {gu}u⊂{1,...,d} are linearly independent under the inner

product defined by w.

Proof. Set gu =
∑

v 6=u βvgv. By assumption, the βv are not all zero. By the orthogo-

nality (7.5), βv = 0 for v ⊃ u.

Now gu =
∑

v 6⊃u βvgv. Consider any point x = (xu, x−u) ∈ Ωw. By grid closure,

there is some other point y = (xu, y−u) ∈ Ωw. Now for any such y ∈ Ωw

gu(x) =
∑
v 6⊃u

βvgv(xu, x−u) =
∑
v 6⊃u

βvgv(xu, y−u) = gu(y)

and therefore for any given z, gu(xu) =
∑

v 6⊃u βvgv(xu, z) can be written as

∑
v 6⊃u

βvgv(xu, z) =
∑
v⊂u

fv(xv). (B.1)

for some functions {fv}v⊂u Now, however, observe that (7.5) implies

∫
gu(xu)fv(xv)w(x)dx = 0

for any fv by the condition (7.2). gu is therefore orthogonal to
∑

v⊂u fv(xv) and we

must have gu = 0. Contradiction.

Grid closure is necessary here to ensure (B.1) holds. To demonstrate it’s necessity,

consider a bivariate w with support only on the line y = x. On the support of w,
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f(x) = f(y) for any f and we cannot insist on being able to write (B.1). This linear

independence will now be used with a calculus of multiple variations to derive the

main result.

Theorem B.2.1. For w grid closed and f ∈ L2
w, the FAME criterion for f has a

unique minimizer.

Proof. Call the FAME for criterion for f evaluated at G Jf [G]. Let F = {fu}u⊂{1,...,d}

be a minimizer of Jf and let G = {gu}u⊂{1,...,d} 6= 0 satisfy (7.2). Let H = {hu}u⊂{1,...,d} =

{fu + εugu}u⊂{1,...,d} for ε = {εu}u⊂{1,...,d}. Then J [H] has a minimum at ε = 0.

Continuing the calculations from Theorem 7.1.1, the Hessian of J [H] with respect

to ε is given by the inner product matrix of G under w:

[
∇2

εJ [H]
]
u,v

=

∫
gu(x)gv(x)w(x)dx

By the Lemma B.2.2, the elements of G are linearly independent under w, and

this matrix is positive definite. J [H] is therefore convex in ε and ε = 0 is the unique

solution.

Since this is true for any G 6= 0 satisfying (7.2), F is the unique minimizer of J .

I used grid closure as a motivation for the approximation scheme in §7.2. Below I

present stronger and more common regularity conditions.

Lemma B.2.3. An open set of Rd is grid closed.

Proof. Let x be in the support of w. Since the support of w is open, ∃ε > 0 such that

Bε(x) is also in the support of w. Now take the grid of values defined by adding ε/2n

to any set of coordinates of x. This grid is wholly contained in Bε(x).

Theorem B.2.1 and Lemma B.2.3 immediately provide the following corollary, giving

a more common form of regularity.
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Corollary B.2.1. For any w that has support on an open set of Rd, and for any

F ∈ L2
w, there exists a unique FAME decomposition for F .

In a the same vein, we can demonstrate the conditions for (7.8) to be well defined.

Corollary B.2.2. If the support of w is a union of grids, then for any F in L2
w there

exists a unique FAME decomposition.
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Sparse Matrix Solutions for FAME

This appendix provides a description of the computational complexity associated

with solving (7.8) using conjugate gradient methods. The structure of the equations

allows the linear system to be solved with much lower computational and memory

cost than a naive implementation would imply. I will abuse notation further here and

assume we are estimating an effect fu. −u will be taken as a single variable which

will become the |u|+ 1st element of u.

C.1 FAME Estimation in Matrix Form

Using matrix notation defined below, I will re-write (7.8) as

Nu∑
i=1

w(zi) (Xi,f − F (xi))
2 = (Xf − F )T W (Xf − F )

under the constraints, ∀v ⊂ u, ∀xk,v:

Nv\{j}∑
i=1

wu(xi,v\{j}, xk,j)fv(xi,v\{j}, xk,j) = 0⇔ Cf = 0

Xi, indicates the ith row of X.
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Here the following notation is used, with examples for estimating a univariate effect

f{1}:

f a vector indexed by {i, u}, i ∈ 1, . . . , Nu giving fi,u = fu(zi).

For estimating f{1} this is (in transpose):

[f1(z1,1), . . . , f1(zN1,1), f−1(z1,−1), . . . , f−1(zN−1,−1)]

F, W are vectors giving F (zi) and w(zi) respectively for i ∈ 1, . . . , Nu.

X A matrix indexed by i ∈ 1, . . . , Nu rows and {j, v}, v ⊂ u,j ∈ 1, . . . , Nv. It’s

entries are given by

[X]i,{j,v} = I(zj,v = zi,v)

and for the univariate problem it can be written as



1 0 · · · 0 1 0 · · · 0

0 1
. . .

...
...

...
. . .

...
...

. . . . . . 0
...

...
. . .

...

0 · · · 0 1 1 0 · · · 0
...

...
...

...

1 0 · · · 0 0 · · · 0 1

0 1
. . .

...
...

. . .
... 1

...
. . . . . . 0

...
. . .

...
...

0 · · · 0 1 0 · · · 0 1


C Is indexed by {k, {v, j}}, v ⊂ u, j ∈ v k ∈ 1, . . . , Nv\jand {i, v′}, v′ ⊂ u,

i ∈ 1, . . . , Nv′ with entries given by
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[C]{i,vj},{k,v′} = I(v = v′)I(zi,v\j = zk,v\j)wv(zk,v\j)

which translates, for the example, to

 w1(z1,1) · · · · · · w1(z1,N1) 0 · · · · · · 0

0 · · · · · · 0 w−1(z1,−1) · · · · · · w−1(zN−1,−1)


Note that both X and C are very sparse. I show in §C.2 how these objects can be

coded efficiently and that X never needs to be stored.

The desired result f , then solves

 XT WX CT

C 0

 f

λ

 =

 XT WF

0


where λ is a Lagrange multiplier vector indexed by {k, {v, j}}, v ⊂ u, j ∈ v, k ∈

1, . . . , Nv\j. This system is
∑

v⊂u

(
Nv +

∑
j∈v Nv\j

)
square. Moreover, the

∑
v⊂u Nv-

square matrix XT WX is no longer sparse and requires N2
u

∑
v⊂u Nv calculations to

create.

For the purposes of the demonstrations in this thesis, I have solved this system

naively on problems using up to 100 points to generate grids. This will not be feasible

for larger numbers of points or more than three dimensions. However, good iterative

methods can be applied to solve this system at much lower cost.

C.2 Iterative Methods and Storage

By Corollary B.2.2, so long as w has sufficient regularity on the grid, the linear

system is invertible. Using an iterative method like the conjugate gradient method
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[23] only requires left multiplication of a vector by the matrix on the left hand side.

With reasonable weights w, we can expect such methods to converge quickly.

As observed, XT WX is not sparse and even this multiplication is cumbersome.

However, left multiplication can be performed in steps. To make this efficient, I will

re-represent each of the quantities in the manner suggested by their indexing:

F, W can be placed into |u|-dimensional arrays, with entries exactly corresponding to

the grid points where they are evaluated. Requires storing Nu real numbers.

f is a list of 2|u| arrays indexed by v ⊂ u. Requires
∑

v⊂u Nv reals.

C We make use of sparsity to store C as in f : a list of sub-arrays, one for each

v ⊂ u, containing the marginal of w on v calculated on the grid points. This

can be created by calculating XT W . We need
∑

v⊂u Nv reals.

λ Is a list of lists. For v ⊂ u, store |v|, |v|−1-dimensional arrays, the jth of which

has the elements in λv\j. Stores
∑

v⊂u

∑
j∈v Nv\j reals.

I will not store or calculate X. The required left multiplication can then be

achieved using the following operations:

• X : f → F : The resulting component at multi-index i is given by
∑

u⊂v fiv ,v.

Requires 2|u|Nu additions.

• W : F → F : Nu component-wise multiplications.

• XT : F → f : At v and multi-index iv, this is given by
∑

j−v
F{iv ,j−v} - a summa-

tion over the remaining dimensions. Total requirements are 2|u|Nu additions.

• CT : λ→ f : At fi,v calculate Ci,v

∑
j∈v λj,i. Requires 2|u|−1

∑
j∈u Nj additions.

• f + CT λ:
∑

u⊂v Nv component-wise additions.
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• C : f → λ: At component {i, vj} calculate
∑Ni

k=1 f{ij ,kv\j},vC{ij ,kv\j},v. Takes

2|u|−1
∑

j∈u Nj additions and multiplications.

So the total storage cost and total computational cost of this iteration are O(Nu).

Given a bounded set of iterations, the total approximation cost is on the order of the

size of the grid. In general terms, Nu ≈ N |u| which quickly becomes large with the

dimension of |u|. However, since we can visualize and most second-order interactions,

this is sufficient for practical purposes.

For interaction importance scores, we have already commented that the condi-

tions C are not necessary, nor are all the effects. This leaves an under-determined

system. However, techniques for iterative solutions to these also exist [5]. The main

cost involved in such a solution remain left multiplication by X and XT which have

computational cost |u|Nu for this setting.
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