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Abstract

The recently developed LARS algorithm for subset selection [2] has
created a new set of ideas about subset selection. Among these is the
Forward Stagewise approach, originally described in [3] and [4]. While
this technique is largely glossed over, it has great potential in very large,
sparse systems.

We present an application of the Forward Stagewise technique to Nat-
ural Language Processing involving hundreds of thousands of predictor
variables and observations in which neither LARS nor the standard For-
ward Stepwise subset selection techniques are computationally feasible,
but in which Forward Stagewise is able to produce good solutions in a
very small amount of time. We also suggest extensions to subset selection
in more general likelihood models.

1 Introduction

The problem of Natural Language Processing is not given a great deal of
publicity within statistics literature. The area does, however, provide statisti-
cal challenges and is an excellent source of sophisticated examples for modern
statistical techniques. In particular, in this paper we present an application of
the new Forward Stagewise feature selection algorithm as described in [2]. We
examine some variations on the procedure and their effect on performance.

The interest in this application lies in its scale - Forward Stagewise provides
an algorithm for feature selection where traditional techniques would be com-
putationally infeasible. Moreover, we are able to achieve predictive accuracy on
the same order as when using ridge regression.



The algorithm as described here provides very good performance. To explore
the techniques further, we propose a randomized look-up variation, which could
provide further efficiency at little cost to predictive accuracy which imposed a
small price when applied to somewhat larger models.

At the end of this paper, we also flag the application of the algorithm to
a more general likelihood-maximization setting in which LARS does not have
immediate generalizations.

2 Structure of Natural Language Processing Data

The most widely used representation for a sentence structure is a tree, where
the nodes at a lower level compose a concept represented by their parent node.
In order to model the derivation of a sentence structure recursively and statis-
tically, we adopt a particular formalism: the dependency grammar. For depen-
dency grammar, the dependency relation between two words in a sentence is
explicitly given and no intermediate level constituents are shown in the tree. A
dependency relation consists of a head node and a modifier node. To make the
presentation consistent with the procedure for deriving sentence structures, we
adopt a variant of the dependency grammar representation, where both head
node and modifier node are placed at the same level and the head node is also
taken as the parent node. As an example, the following figure shows the depen-
dency relation or a parse tree of the sentence Statistics offers the world a fast
way to select features.

offers
offers
Statistics
offers way
offers world w ay/\to
the world @ way to select

fast  way select  features

If we examine this instance bottom-up, we say that “offers” is modified by
“world” and again by “way” - itself modified by “to select” - and so forth.

For a new sentence, we are now faced with the task of automatically produc-
ing its parse tree. The set of dependency relations is typically generated through
a parsing procedure that may use either a set of manually constructed grammar
rules or a statistical model trained from a corpus with manually created trees of
different sentences. Here, we use the statistical approach with the data found



in [5], and try to create a probabilistic model for the space of possible trees and
choose the tree with the largest likelihood.

To do this, we follow the approach given in [6] and [7]. In this setting, the
tree is built bottom-up, calculating the join with the largest likelihood at each
iteration. This computation requires the estimation of the probability of the
joined tree as

P(T,L,R) = P(T|L, R)P(L)P(R)eM"(":%)

with L and R corresponding to the left and right subtrees of the join respectively,
and M1 being the mutual information between them. The first term can be
obtained through other statistical estimation methods, and the next two terms
in this expression can be calculated by recursively applying this formula, but
for the last we wish to estimate M I as a linear model. This representation is
necessitated by the sparseness of the data - there are often no examples of a
possible L, R join in the corpus, yet a probability of 0 is both un-realisitic and
often not useful.

We will estimate an initial M score by counts in the data and design a set
of features to predict it. The features or patterns are generated through feature
templates that specify two aspects: one is the maximum size of the subtrees we
want to consider at one time, where the size of the subtrees is defined as the
number of levels included; the other is the particular positions and information
in the subtrees to be included. In the experiments described here, we use two
levels as the maximum size for the left and right subtrees, and use words, part
of speech tags, and functional relations as the space of possible information.
Thus, each such subtree is represented by a ten-dimensional vector, listing the
words and tags on each of the four leaves at the bottom of the subtree and the
relationships binding them on each of the second level nodes. We call such a
ten-dimensional vector a ten-tuple instance. A feature template is also a ten-
tuple with its ten positions corresponding exactly to the ten positions in the
instance tuples. Each position in a feature template has the values of 0, 1, or 2,
where 0 indicates that this position is not of interest and not considered here, 1
indicates that a special symbol representing leaf positions of any tree must be
present, and 2 indicates that the particular value in this position in the current
instance is taken.

Applying templates to each ten-tuple instance produces an enumeration of
the specific patterns of words tags and relations in the data that correspond
to the entries specified in each template. This enumeration gives us features
that are also represented by ten-dimensional vectors. Since the set of features
generated from a single instance by different templates are mutually exclusive,
we produce a linear regression on a set of categorical variables (templates) each
with a large number of categories (features). This is essentially a very large
scale ANOVA. We used 28 templates which generated between 40 and 200,000
patterns each. After removing all patterns that corresponded to fewer than
5 instances, we were left with around 190,000 features in a corpus of 850,000
examples'. Within this system we still wish to eliminate the greater part of
these features both as a form of regularization and to improve computational
efficiency in estimating the linear combination.

n this case examples are regarded as three-level sub-trees after joining left and right two
level subtrees together.



From a computational perspective, we are dealing with a highly sparse sys-
tem of equations. Our data matrix, X, has dimensions 850,000 x 190,000 and
would not normally be storable in memory. However, all entries in X take values
0 or 1, with at most 28 1’s in each row. As such, we can store and manipulate
X very efficiently in sparse matrix format using techniques found, for example,
in [1].

3 OLS Solution and Computational Complexity

Calculating the OLS solutions for this model requires inverting the 190, 000 x
190, 000 correlation matrix X7 X. In general, this would not be feasible. How-
ever, this, too, is a highly sparse, symmetric matrix and as such amenable to
sparse-matrix storage techniques and the use of the conjugate gradient method
as given in [1]. This was implemented in C on an IBM computer with an Intel
Pentium 4 1.9GHZ processor and 512 MB of RAM. We required a relative error
for the inversion of 1075 and the system needed 399 iterations to converge which
took about 20min.

In dimensions of this size, some regularization is necessary. For reasons of
computational speed, it is also very desirable to use a relatively small subset of
the variables in the computation. Standard subset selection techniques, however,
will not provide a reasonable solution. Forward Stepwise approaches require
that the OLS solutions be calculated for each candidate variable that we add at
each stage of the procedure - or O(190,000%) such matrix inversions. Using the
performance of the conjugate gradient method above as a benchmark, we would
need some half a million years for the algorithm to terminate. The LARS [2]
algorithm allows for an efficient update of a Cholesky factorisation that reduces
its requirements to O(p®+np?). This remains unfeasible, and in fact on the same
order of complexity as Forward Stepwise with a conjugate gradient solution,
assuming this can be computed in O(p). The Forward Stagewise algorithm
described below will provide a feasible method of generating a set of features
and co-efficients to be used in the model.

4 The Forward-Stagewise Algorithm

The design of this algorithm follows the description of Forward-Stagewise
selection given in [4]. For the general problem of providing a regularized fit for
the parameters of a linear regression model

y:XX

the Forward Stagewise algorithm produces a path of successively unregularised
parameter estimates that is given in epsilon steps.

To begin with, we assume that both y and the predictor variables X have
been centered and appropriately scaled and we start with the initial model

X=0
The path of solutions from this completely-regularized null model is generated
iteratively by incrementing the co-efficient of the variable with the highest cor-
relation with the current residuals of the model at each step.



More specifically, given a current co-efficient vector X, the current residuals
are defined as

r:y—XX

so the vector of current correlations is given by

c=XTr

and we choose the feature index to be incremented as

j = argmax]|c;|

with the co-efficient vector updated by

X(— X-{—e-sign(cj.) . 13

where 1. represents the j’th indicator vector. From here on, we will assume
that € is a signed quantity, incorporating sign(cj.) for notational convenience.
It should be noted that this procedure has a number of desirable properties:

o A selection effect - co-efficients remain zero until they are first incremented.
Therefore, for much of the path, many of the co-efficients will remain zero;
indicating that their respective predictor variables may be omitted from
the model.

e Computational efficiency - while there are many more iterations than, say,
in standard Forwards Stepwise selections, at no point does the algorithm
need to invert a matrix. For large systems, this is a significant saving. It
is also particularly amenable to the use of sparse matrices, as described
below.

e Conservatism - traditional feature selection methods follow a greedy ap-
proach which tends to be highly variable. By contrast, Forward-Stagewise
is much less aggressive in adding variables to its model. In fact, [4] demon-
strates that Epsilon-Stagewise co-efficient paths behave very similarly to
LASSO paths which incorporate an explicit regularization penalty and it
is this observation that motivated the results in [2].

5 Forward-Stagewise and NLP

Forward Stagewise subset selection turns out to be particularly well suited
to regularizing Mutual Information scores in Natural Language processing. In
this case the matrix X, before we have centered and scaled it, is a highly sparse
system of zero-one entries. Suppose the features are to be generated from k
templates on n instances, then X contains at most kn non-zero entries. As
such, X can be cheaply stored and allows an O(n) computation of both X\ and
XTr.



Additionally, since many features are mutually orthogonal?, the correlation
matrix, XT X, also represents a sparse, symmetric system.

In order to perform a Forward Stagewise algorithm, the columns of X must
be centered and scaled. Therefore, we must store a vector of means f and one
of scales ¥ corresponding to these.

The data matrix that we are now really dealing with is

G = (X - 1,@")D(3)

where 1; is a column vector of length ¢ with 1 in each entry and D(¥) is a
diagonal matrix with diagonal entries given by 4. The correlations in which we
are interested become

c=G (y —GX)

In order to update these, we need to calculate

GT(y—G(X+€ly)) = c+eGTG1;
c+ ey DA)XTX) j — evjuy

which involves a constant offset to all the correlations and an offset to the O(1)
non-zero entries of the X7 X matrix.

The set-up costs in floating-point operations are

e Calculation of XTX (O(n)).

e O(p) calculations for i and 7.

e O(n) calculation of X7Ty.

e O(p) calculations of GTy = 71, XTy.
and each iteration requires

1. j = argmax]c;j| O(p).

2. c+c+ ey (XTX),; O(1).

3. ¢+ c+eyjpy, 0(p)

Note that steps (1) and (3) may be combined and also that we never need
to calculate the current residuals.

We have storage requirements of 2 n-vectors - p and y - the p vector of
correlations and O(n) storage for X7 X in sparse format.

It can, however, be helpful to keep track of residuals, this requires the update

rr—ey X+ ey

2This is true a priori in some cases - we have already noted that features from the same
template are mutually exclusive, and templates specifying the same positions in the ten-tuple
will produce pairs of features that are mostly orthogonal. Many more feature pairs with be
empirically orthogonal.



here the first term requires only an 0(1) update. The second is O(n). However,
since this is constant for all elements of r, this need not be done at every
iteration and may be left even until the end. We choose to conduct a running
update every 100 iterations in order to maintain a running diagnostic on the
performance of the algorithm.

5.1 Stopping Rules

Without some stopping criteria, Forward Stagewise will move to within € of
the OLS solutions (if they exist) and then form an infinite loop. However, for
large e this may not achieve a close enough approximation to the OLS solution.
The algorithm as implemented has the following stopping rules:

e A loop of length 2 has been reached (ie, the algorithm adds and subtracts
e from one co-efficient continuously).

e The maximum current correlation drops below a given threshold.
¢ A maximum number of iterations has been reached.

e A maximum number of co-efficients have entered the model.

If using a test data set, the most recent test-error minimum occurred a
given number of iterations ago.

6 Results

The performance of a model will be calculated on its ability to fit mutual
information scores. For training data, we will report the usual R? statistic:

2221 (yi — Xi))®

S (s — )
for either a best training-error or best test-error model. We will also report an
error on a test set, given as the average squared error.

In order to validate the model, we removed a test sample corresponding to
roughly 10% of the data; mutual information scores were calculated using the
full sample. In order to avoid repeated instances (which will each have the same
MI score) in both test and training samples, the test set was selected randomly
from the unique patterns in the data-set. All instances of that pattern are then
being assigned to the test set.

Choosing € = 0.01 produced a model that ran for 62,100 iterations before
stopping due to the final rule above, having found the best test error at iteration
32,000. The R? for this final model was 0.923, involving 37385 non-zero co-
efficients, and this took around 20 minutes to produce. The best test error
was 8.576 (compared with an initial error of 56.528), corresponding to 15342
non-zero co-efficients. Figure 1 provides test and training error rates along the
co-efficient path, as well as the number of non-zero co-efficients.

The choice of € is important to over-all performance only in so far as it
needs to be sufficiently small. The algorithm described here follows [2] in taking
a fixed e. In practise, the step size is usually scaled to create a dimensionless

1-—



Forward Stepwise Performance
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Figure 1: Training (solid line) and test (dashed) errors against iteration num-
ber. The number of non-zero co-efficients (dotted - tick-marks on the right
axis) is also given. The vertical line indicates the model with best test-error
performance.

quantity. [3] uses a default ¢ = 0.1 scaled by the current residual squared
error, for example. We have maintained the fixed-e approach, but have chosen
a smaller value after some experimentation. Figure 2 provides best-test-error-
model statistics as € is varied.

It can be seen that smaller values for e result in better models, but that
the improvement reduces dramatically below ¢ = 10725, We also note that
the number of non-zero co-efficients also do not noticeably increase. At this
point the run-time for the model extends to about one hour. A scaling factor
as described above would likely provide significant gains in speed.

7 Variations

The sparsity of the OLS system in an NLP context allows us to produce
a computationally feasible algorithm. However, for larger systems, it may be
necessary to subsample the set of correlations to be considered each time we
update. Doing so would not remove the constant off-set update, but this could
either be made once every set number of iterations, or we could maintain a
record of when the last update for a particular correlation was made.

There are a number of trade-offs in taking this approach. Firstly, this will
result in a model with more non-zero co-efficients. This may not be as dramatic
as might be feared - if a good model contains 10,000 features out of 100,000,
then considering only 1000 correlations at a time still has a vanishingly small



Forward Stagewise by Epsilon
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Figure 2: Best test error (solid line) against — log;,(e). We have also plotted the
number of non-zero co-efficients (dashed) and number of iterations/100 (dotted)
required to reach the best model. The axis for these is given on the right.

probability of not containing at least one of these features. On the other hand,
over thousands of iterations, this will happen a few times and we will extend
the number of iterations required to reach a minimum.

Alternative, mixed, strategies might involve updating some of the current
best residuals as well as a randomly chosen subset. We could also introduce a
queueing strategy based on each correlation’s last update-time. For the pur-
poses of this article, however, we will confine ourselves with investigating the
usefulness of the initial, simple-minded approach.

Such approaches may actually have a greater regularizing effect, in terms
of further reducing the greediness of the algorithm. In addition, under the
situation above, we should not degrade performance greatly since the important
co-efficients should have a large chance of being included.

An empirical study on the data described above indicates that while these
variations do not improve performance, their degrading effect is very small.
Further, although more iterations are required, this does not outweight the per-
iteration savings. The Forward-Stagewise algorithm already described above
is computationally feasible for the current problem, however for even larger
systems, such a technique may provide significant computational savings.

Two possible techniques were tested here. The best-feature from the previous
iteration may be automatically included in the randomized list of features to
consider, or the list could be entirely random. Figure 3 provides performance
statistics for both methods as the number of random samples is varied.

The performance of the models along the co-efficient paths looks similar to
those without any randomization (Figure 4). For larger random sample sizes,



Randomized Forward Stagewise 1
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Randomized Forward Stagewise 2
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Figure 3: Results of optimal test-error against the size of random samples for
methods for fully randomized samples (below) or including the most recent
best-feature (above). Solid lines show the optimal test error rate (both plots
are on the same scale), dashes show the number of non-zero co-efficients and
dots indicate the number of iterations. Note that the right-hand axes are not
to the same scale across plots.

the test error is very close in magnitude to that achieved by the full Forward
Stagewise algorithm. However, this typically takes many more iterations and
uses a larger number of features.

10



Randomized Forward Stepwise
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Figure 4: Training (solid line) and test (dashed) errors against iteration number.
Also the number of non-zero co-efficients (dotted - tick-marks on the right axis).
The vertical line indicates the best test-error performance.

8 Broader Likelihood Maximization

Unlike the LARS techniques, the Forward Stagewise approach is not re-
stricted to a linear regression framework. As such, Forward Stagewise can be
very simply generalized to a likelihood-maximization framework. We make the
observation that the likelihood for the data with fixed predictors and Gaussian
noise is

1 (vi-xF»)’

e 202

i1 2mo

The negative log-likelihood of this is proportional to the squared-error loss cri-
terion used in the fitting procedures above. Under this model, the vector of
correlations is exactly the gradient of the negative log-likelihood loss at the
current co-efficient values. Under this interpretation, Forward Stagewise may
be represented as a restricted steepest-ascent algorithm; we move € in the co-
ordinate direction of steepest gradient. We are now able to extend naturally to
any likelihood function L(X\) that takes a linear combination of the features.
It is then only necessary to find a tractable expression for

% log L(X ) and log L(X X + €X})
J

in order to produce an algorithm which will maximize L at the same time as it
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will perform subset-selection and produce a large class of models for regulariza-
tion.

As an example of this, the data above may be modeled as coming from an
exponential family with likelihood

with

being a normalization constant, where W; is a conditional probability in the
above parsing problem setting. Maximizing the log likelihood is therefore equiv-
alent to maximizing

N
S aTA - Nlog (C(3) (1)

i=1

and the derivative with respect to A; is given as
N N T
Zi:l l‘ijWiemi A
Zmij -N N 2T
i=1 > i1 Wie®

This can be used in a standard gradient-based approach. As noted above,
however, using the Forward Stagewise algorithm will provide a sequence of mod-
els for verification as well as a form of subset selection.

To examine the computational requirements for the updates, we observe that
the first term remains constant. Now consider the denominator of the second
term

N
C°\+ely) = Z Wieti (el
i=1

N
= CON) + (e = 1) Y @y Wiet
= cO(A)+(ef—1)c;1(A)

with

N
C]},(/\'FE].]') = Zl‘ijWiez;r(A+dj)

i=1

n
= C'kl: ()\) + (66 — 1) injxikWieIiT)‘
i=1

= O} + (e —1)C%k
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and finally

n
Cjzk(A+€].J) = Zml]mszzezZ‘(A+l])
i=1
- 660]2]6 (A)

Thus these three can be updated in turn when we increment A;.

The procedure would then continue in the obvious manner: we choose the
feature with the largest absolute derivative and increment its co-efficient in the
direction of that derivative.

We note that the efficiency of these updates relies on the sparsity of the
data matrix. Under these conditions, an algorithm may be implemented in
cases where the derivative of the likelihood with respect to the coefficients is
not feasibly calculated, but

L(X\ +€X;)

remains computational cheap to compute. In this case, we may search through
the parameters to find that which explicitly provides the greatest increase in
likelihood when incremented by e.

9 Conclusions

The Forward Stagewise algorithm provides a highly general method of per-
forming subset selection. In particular, it can very usefully be applied to large,
sparse systems which would not otherwise be solvable. We have presented an
example here where this method allows us to perform subset selection effectively
where more standard methods would not be computationally feasible.

Additional speed-up is also possible by introducing a random set of co-
efficients to consider at each iteration. The experimental evidence presented
here suggests that this may be done without greatly harming the predictive per-
formance of the estimate. Additionally, Forward Stagewise can be considered
as a much more general gradient-ascent algorithm for likelihood-maximization
and allows for similarly increased performance in large, sparse systems.
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