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1 Introduction

This report examines the theoretical properties of Forwards Prediction Error (FPE) as proposed in two
different settings: as a means of selecting smoothing parameters in nonparametric regression (Morton,
Kang, and Henderson, 2009) and for selecting robustness parameters in the generalized profiling method-
ology for estimating differential equations proposed in Ramsay, Hooker, Campbell, and Cao (2007); Ellner
(2007). FPE provides a criterion for selecting a smoothing parameter in nonparametric regression and
uses the value of an estimated smooth x̂λ(t) and its derivative ˆ̇xλ(t) to linearly extrapolate to an ob-
servation at time t + h via x̂(t) + hˆ̇x(t). Here λ represents a smoothing parameter to be chosen to give
minimum predicted mean squared error between the observations and the extrapolated prediction. In
the case of differential equation models, the equivalent criterion involves solving a differential equation
forwards h time units from estimated initial conditions with estimated parameters in a manner made
precise below.

This report studies the asymptotic properties of these methods. We demonstrate that in the case of
local polynomial regression and other kernel smoothing methods, FPE results in an estimate of λ that is
of the same order as h and that intuitive choices for h do not then lead to optimal convergence rates for λ,
or even to consistent estimates x̂λ(t). However, in the case of generalized profiling for differential equation
models under infill asymptotics, choosing h to be constant leads to consistent estimates of parameters in
the differential equation.

Two variations on the methods above are also considered. When local polynomial regression is
employed and the global polynomial model is assumed correct, the regression function is estimated con-
sistently. We also examine the use of FPE and the “gradient matching” approach suggested in Ellner,
Seifu, and Smith (2002); Brunel (2008) and show that non-parametric rates of convergence are obtained.

2 FPE and Smoothing Parameters in Nonparametric Regres-
sion

We suppose that we have data pairs (yi, ti) for i = 1, . . . , n with an assumed relationship

yi = x(ti) + εi

where the εi are independent N(0, σ2) random variables. There are several non-parametric estimates of
x; smoothing splines (Wahba, 1990) or local polynomial estimators (Fan and Gijbels, 1996) being among
the most popular. These all have some smoothing parameter that controls the roughness of the resulting
estimate, either governing the strength of the penalty for smoothing splines, or the width of a kernel
for local polynomial estimators. Other estimates use the number of terms in a basis expansion such
as splines, Fourier series or wavelets (see ?). There are many potential means of estimating smoothing
parameters: cross validation, various information criteria, ReML estimates and so forth, (see Gu, 2002),
but these generally yield unsatisfactory results from the point of view of visual aesthetics.

Morton et al. (2009) suggested minimizing forwards prediction error as a means of obtaining smooth-
ing parameters for spline estimates. Specifically, they considered an estimate xλ(t) for a curve along with
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its derivative ẋλ(t) and measured:

FPE(λ, h) =
Nn∑
j=1

1
nj

∑
ti∈[t0j t0j+h]

(
yi − xλ(t0j )− (ti − t0j )ẋλ(tj)

)2
. (1)

where the t0j are a set of Nn starting points, typically taken as being the same as the data points ti. The
nj are the number of observed data points falling in the interval [t0j , t

0
j + h].

It is worthwhile asking under what conditions minimizing FPE(λ, h) will result in theoretically
useful estimates. There will be a clear advance if a simple rule for selecting h is available. If consistency
or optimal convergence rates require h = O(nβ) for β /∈ {0, 1}, there will be less utility in the approach.

A brief example will demonstrate that forwards prediction error does not always yield a useful
estimate for λ. Consider the local polynomial regression estimate:

(βλ0(t), βλ1(t)) = argmin
β0,β1

∑
(yi − β0 − (t− ti)β1)2

K

(
t− ti
λ

)
with the natural estimates xλ(t) = βλ0(t), ẋλ(t) = βλ1(t) used in (1). A general examination of the size
of λ will follow below. However, the particular choice of K(t) = I(t ∈ [0 1]) yields an optimal value of
λ = h since for each tj ,

(β0(tj), β1(tj)) = argmin
β0,β1

∑
ti∈[tj tj+h]

(yi − β0 − (ti − tj)β1)2.

Thus, the conditions on h under which x̂h(t) is estimated consistently or optimally are the same, and
just as practically unhelpful, as the original conditions on λ.

More generally, we can examine the relative rates of λ and h within a local linear setting. For the
sake of mathematical simplicity, we assume the ti occur on a circle in order to avoid special calculations
for the edges of a data domain and we use the shorthand |s|c for smod1.

Theorem 2.1. Let (yi, ti) i = 1, . . . , n be measurements of a function x(t) with continuous fourth deriva-
tives such such that

yi = x(ti) + εi

with ti = (i− 1)/n. Define an estimate x̂λ(t) by a local smooth

x̂λ(t) =
1
nλ

n∑
i=1

yiK

(
|t− ti|c

λ

)
with an estimated derivative

ˆ̇xλ(t) =
1
nλ

n∑
i=1

yi

(
|t− ti|c
λ2

)
K

(
|t− ti|c

λ

)
.

where K is symmetric with continuous fourth derivatives and
∫
K(u)du =

∫
u2K(u)du = 1.

For each h, define a selection criterion for λ by

FPE(λ, h) =
1
n

n∑
i=1

[
yi − x̂λ(|ti − h|c)− hˆ̇xλ(|ti − h|c)

]2
and let

λ̂h = argmin
λ

FPE(λ, h)

then
λ̂h = Op

(
max(h, n−1/2)

)
as h→ 0.
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In this theorem our definitions of x̂λ(t) and ˆ̇xλ(t) are nearly those for a local linear smooth for
regularly spaced data, differing only by the absence of normalization. This will make no difference
asymptotically, but serves to simplify our calculations.

Proof. We first observe that as in Härdle and Marron (1985), it is sufficient to examine the expectation
of forwards prediction error. Expanding

E [FPE(λ, h)] =
1
n

∑(
x(ti)−

1
nλ

∑
x(tj)K

(
|ti − h− tj |c

λ

)[
1 + h

|ti − h− tj |c
λ2

])2

+
σ2

n2

∑(
1− 1

nλ
K

(
−h
λ

)[
1− h2

λ2

])2

From this, second-order Taylor series expansions give us that

1
nλ

∑
x(tj)K

(
|ti − h− tj |c

λ

)
= x(ti − h) + o

(
λ2
)

+ o

(
1
n

)
1
nλ

∑
x(tj)

|ti − h− tj |c
λ2

K

(
ti − h− tj

λ

)
= ẋ(ti − h) + o

(
λ2
)

+ o

(
1
n

)
x(ti) = x(ti − h) + hẋ(ti − h) + o

(
h2
)

Thus we can characterize

E [FPE(λ, h)] =
[
o
(
λ2(1 + h)

)
+ o

(
h2
)

+ o

(
1 + h

n

)]2

+ o

(
1
n

)
.

From here, assuming h→ 0, we can match

λ = o
(√

h2 + 1/n
)

yielding in general
λ = o

(
max

(
n−1/2, h

))
.

We also note that the result above can be generalized to higher-order extrapolation, assuming
greater regularity of x(t). We further note

1. Because we have defined FPE(λ) on a circle, the same results will apply to ordinary kernel smooth-
ing with the derivative estimated directly:

ˆ̇xλ(t) =
1
nλ2

∑
K ′
(
t− ti
λ

)
using the calculations as above.

2. If multiple values of h are used h1, . . . , hk, we obtain that

λ = o

(
max

(√
n,
√∑

h2
i

))
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3 FPE and Robustness Parameters

While nonparametric estimates do not yield consistent results, the concept of forwards prediction error
can be used to motivate a measure of robustness for parametric models. In particular, if we consider a
model in which the nominal value of λ is ∞ and the smoothing process is used as a means of providing
robustness to model miss-specification. We consider the two-level criterion described for the estimation
of parameters in ordinary differential equations in Ramsay et al. (2007). A model is assumed of the form

ẋ(t) = f(x(t); t,θ) (2)
x(0) = x0

yi = xj(ti) + εi (3)

Here the εi are independent and identically distributed N(0, σ2) random variables. θ represents an
unknown set of parameters to be estimated; we denote the correct value by θ0 below. The system is
thought to be potentially inexact due to system disturbances and model miss-specification. Ramsay et al.
(2007) proposed allowing extra flexibility to the model by allowing departures from (2). In particular,
they proposed a nested optimization criterion. For each candidate value θ, the procedure estimates a
smooth

x̂
λ,θ(t) = argmin

x∈⊗kW 1

∑
(yi − x(ti))2 + λ

∫
‖ẋ(t)− f(x(t); t,θ)‖2dt.

Where in practise, x̂
λ,θ(t) is represented via a basis expansion. Values for θ were then chosen as

θ̂(λ) = argmin
θ

∑
(yi − x̂

λ,θ(ti))2.

Hooker (2007) demonstrated that for λ → ∞, the estimates for θ̂(λ) were identical to those that would
be obtained by solving (2) for each value of θ and estimating both θ and x0 by minimizing squared error.
Qi and Zhao (2010) further showed that any choice of λn →∞ as n→∞ resulted in consistent estimates
if (2) is an exact model, but that efficiency required λn = O(n2).

In this context, we redefine forwards prediction error through solving (2) forwards. We let x(t,θ,x0)
denote the solution, up to time t, of (2) at parameters θ and initial conditions x0. Then we define

FPE2(λ, h) =
Nn∑
j=1

1
nj

∑
ti∈[t0j t0j+h]

(
yi − xi

(
ti − t0j , θ̂(λ),x

λ,
ˆθ(λ)

(t0j )
))2

. (4)

This measures the deviation of the data from the solution of (2) going forwards from the point x
λ,

ˆθ(λ)
(t0j )

with estimated parameters θ̂(λ).
We can show that under the in-fill sampling studied for non-parametric estimators, with h fixed,

choosing
λFPE = argminFPE2(λ, h)

results in a consistent estimator of θ regardless of the t0j or Nn.

Theorem 3.1. If (2-3) holds, θ lies in a compact space Θ and is identifiable in the sense that

∀ε > 0,∃δ > 0 such that ‖θ − θ0‖ > ε→ sup
t∈[0 1],x0

∫ h

0

|x(t,θ,x0)− x(t,θ0,x0)‖2 dt > δ

and max(ti+1 − ti) = o(n−1), then θλF P E
→ θ0 in probability.

Proof. We let x∗(t) represent the trajectory solving (2) that generates the data. Then as n → ∞ with
fixed h we have∑
ti∈[t0j t0j+h]

(
yi − xi

(
ti − t0j , θ̂(λ),x

λ,
ˆθ(λ)

(t0j )
))2

→ σ2+
∫ t0j+h

t0j

(
xi

(
s− t0j , θ̂(λ),x

λ,
ˆθ(λ)

(t0j )
)
− x∗i (s)

)2

ds.
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uniformly over θ ∈ Θ. Under the identifiability conditions above, the last term on the right hand side is
minimized at θ = θ0 with x∗(t) = x(t,θ0,x0) which is achieved as λ→∞.

4 Robustness in Parametric Regression Models and Gradient
Matching

We note that similar results hold in the case of local-linear estimation, or spline smoothing when an
appropriate null model is employed. In particular, we can demonstrate the following theorem:

Theorem 4.1. Let max(ti+1 − ti) = o
(
n−1

)
and

yi = β0 + β1ti + εi

with Eεi = 0 and let a non-parametric estimator xλ(t) be such that

lim
λ→∞

xλ(t)→ β̂0 + β̂1t

for β̂0 and β̂1 the least-squares estimators of β0 and β1, then xλF P E
(t)→ β0 + β1t in probability.

The proof of this proceeds along the same lines as that of Theorem 3.1; essentially FPE can be
minimized for xλ(t) = β0 + β1t which occurs at λ =∞.

We can also examine forwards prediction error in the context of gradient matching as described
in Ellner et al. (2002). This is a two-step estimate, first obtaining a non-parametric smooth x̂λ(t) and
derivative ˆ̇xλ(t) and then choosing θ̂ from

argmin
θ∈Θ

∫
‖ˆ̇xλ(t)− f(x̂λ(t); t,θ)‖2dt.

In this context, using the minimizing values FPE2(λ, h) for λ can also be shown to achieve consistency
for θ̂. In this case, the choice of λ = ∞ will not yield a parametric form. However, there is a sequence
λn for which x̂λn(t) and ˆ̇xλn(t) are consistent (Brunel, 2008) and choosing this sequence will yield,
asymptotically, the minimizing values of FPE2(λ, h).
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