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Outline

Machine Learning and Uncertainty

Predictive uncertainty:

Classi�cation and Calibration

Regression and prediction intervals

Conformal Prediction

Model uncertainty

De�nitions

Bootstrapping

Ensembles and the In�nitesimal Jackknife

Model interpretation and comparisons between models.

Testing Variable Importance

ML as Plug-ins to Statistical Methods

Attempt to provide (conceptually) simple recipes for all.
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Uncertainty in Machine Learning

Uncertainty quanti�cation approached from many �elds. Often
divided into

Aleatoric: due to intrinsic (irreducible) randomness in nature

Epistemic: associated with lack of knowledge (e.g. about model
form) or measurement ability.

Do not perfectly translate into statistical concepts used here:

Predictive uncertainty: distribution of possible outcomes given this
prediction.

Inferential uncertainty: how stable is this prediction with respect to

Examples provided in the training data
Random numbers used in training process.

Predictive uncertainty easiest, computationally cheap.

Inference is harder, usually requires more computing.
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A Little Notation

Assume that we have a data set of n observations:

D = {(Xi ,Yi )}ni=1

(also examples, realizations, ...)

Data set is used to estimate (learn, train,...) a prediction

function f (x1, . . . , xp)

Use: Xi = row of data set or speci�c new value, x =
placeholder argument in f (x).

Describe

Distribution of Y using f (x)

Stability of f (x) with respect to D.
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Beijing Housing Data

Used for illustrations, predict log(totalPrice), or totalPrice > 325
from

Lat, Lng

Days On Market

online followers

square m

Number of

livingRoom

drawingRoom

kitchen

bathRoom

Building Type

Construction Date

Renovation

Building structure

Ladder Ratio (resident to
elevator capacity)

Elevator

Ownership > 5 years

Subway access

District

Use ranger and gbm in R as tools.
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Prediction I: Classi�cation and Calibration

Given features X assign label Y ∈ {l1, . . . , lk}, often
Y ∈ {0, 1}.
Usually target proportion incorrect (or average costs)

Uncertainty probability pk(X ) = P(Y = lk |X )

pk(X ) /∈ {0, 1} not always obvious.

Binary ⇒ one number summary.

Most learners threshold continuous output: Ŷ = I (f (X ) > c).
(Output layer in NN, proportion votes in RF/boosting, margin
in SVM).

Calibration: transform f (x) → p(x) rather than threshold.

often useful even if f (x) ∈ [0, 1]
ML using misclassi�cation ⇒ overcon�dent predictions.

Best conducted with hold-out data
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Illustration

gbm with Adaboost loss

Highly overcon�dent!

Calibration: predicted
probability corresponds to
outcome proportion.

Assessing calibration:

Divide into bins based on
f (x)

Obtain P(Y = 1) in each
bin
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Calibration Methods

Calibrate by re-scaling f (X ) to give accurate probability
measurements.

Predict Y from logit(f (X ))

by maximizing likelihood
(logistic regression)

a.k.a. Platt Scaling

P(Y = 1) =
exp(a+ bl(X ))

1+ exp(a+ bl(X ))
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Models Can Be Undercon�dent, Too
Random forests over-smooth → don't get as close to {0, 1}.

Many options

Use bins for probabilities/regress probability on midpoints
Pleiss et. al. 2017: simple transformations of f (x) usually
su�cient. 9 / 43



Prediction II: Regression and Prediction Intervals

Predicting Y ∈ R perfectly less believable than in
classi�cation.

Usually provide a range Y ∈ [a(X ), b(X )] with target that Y
in forecast range 95% of time.

Often symmetric about prediction: a(X ) = f (X )− s(X ),
b(X ) = f (X ) + s(X ).
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Ranges from Hold-Out Sets

Given data, (Xi ,Yi ) not used to train f ,

Form residuals (errors) ei = Yi − f (Xi )

Set a(X ), b(X ) to be 0.025 and 0.975 quantiles (no change
with X )

Or s(X ) = 0.95 quantile of |ei |
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Heteroskedasticity and Modeling Variance

Sometimes interval width should change over X , or f (X )

Calculate sd or quantiles within
bins de�ned by f (x).

Intervals: f (x)± 2sd(x)

Model bin sd by midpoint

sd(x) = g(f (x)) results in

f (x)± 2g(f (x))
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Variance Stabilizing Transformations

ẽi = log(Y )− log(f (X ))

Or train to predict log(Y )

Also
√
Y , 1/Y , . . ..

Transform back to
[f (x)e q̃0.025 , f (x)e q̃0.975 ]

Z = log(Y ) reduces extreme values ⇒ predicting Z improves test
error.
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More Sophisticated Alternatives

Conditional Density Estimation

Making distribution parameters model-dependent:

Y ∼ g(y ; θ(X ))
Conditional kernel density estimation using (Y ,F (X ))
. . .

Quantile regression

Train model to minimize quantile loss for the τ -quantile:

Lτ (Y , a(X )) = τ(Y − a(X ))+ + (1− τ)(Y − a(X ))−

based on original X
based on values of f (X ).
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Conformal Prediction

Provides C (X ) such that P(Y ∈ C (X )) > 1− α with minimal
assumptions.

Based on exchangeability: on held out sample ei = Yi − F (Xi )
have same marginal distribution.

[f (X ) + qe
0.05, f (X ) + qe

0.95] has 0.9 probability of covering

future Y .

Probability: over both test set, and future X that come from

test-set distribution.

Can be used to correct UQ + obtain marginal �nite sample
guarantees.

Eg. given [a(X ), b(X )], measure

ri = max(a(Xi )− Yi ,Yi − b(Xi ))

and correct to [a(X )− qr0.975, b(X ) + qr0.975].

Can also apply to level of a density, risk sets, . . .
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Conformal Prediction

Original Conformal Prediction (Vovk and Vapnik 1998) based on:

Retrain fy (X ) with additional data (X , y).
Find range of y so that y − fy (X ) in central 95% of training
residuals.

But: simple approaches (Y regressed on f (X ) using hold-out data)
usually su�cient in practice.
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Model Uncertainty
How stable is the prediction f (X )?

How di�erent might f (X ) be

1 If we re-run the learning algorithm?

2 If we used new data?

Usually summarized by Con�dence Intervals

Interval includes average prediction 95% of time.

Reproduction intervals often more relevant

Interval includes re-estimated f (x) 95% of time.

Bias in f (x) ⇒ CI need not cover �truth�, but RI gives reliability.

Normal theory:

CI = [f (x)± 2sd(f (x))]

RI = [f (x)± 2
√
2sd(f (x))]

Challenge: how to obtain sd(f (x)).
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Monte Carlo versus Sample Variability

Break Housing data into 10 sets, each with 3,000 training, 1,500
test points.

Re-running random forests 20
times each for �rst test set.

Running on each of 10
independent data sets:
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Monte Carlo versus Sample Variability

Re-run 20 times for each of 10 data sets, predict at one data point.

Sample variance 20 times Monte Carlo
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Bootstrapping

�Simulate� new data. For b ∈ 1, . . . ,B :

1 Resample training data with replacement

2 Fit f b(x) on resampled data

use collection of bootstrapped f b(x) for inference:

sd(f (x)) from standard deviation among bootstraps (B ≈ 50)

CI based on quantiles of f b(X )− f (x) (B ≈ 500)

subtract and reverse quantiles:

[f (x)− q0.975(x), f (x)− q0.025(x)]

Theoretical guarantees for bootstrapping may not hold in ML.
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Bootstrap and Monte Carlo Variance

20 Bootstraps per independent data set, 20 re-runs with same data.
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Bootstrap Con�dence Intervals

Simple intervals are
f (x)± 2s(x)

s(x) = between bootstrap
standard deviation

Most commonly used in ML.

Asymmetric intervals reversed in order to cover mean.

→
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Random Forests and the In�nitesimal Jacknife
Bagging-type ensemble methods have bootstrapping built in.

Random Forests:

1 Train trees Tb(x) on bootstrap data sets

2 Report average prediction: f (x) = 1
B

∑
Tb(x)

Do we want to bootstrap a bootstrap? And wouldn't we then
average more? Bootstrap is about T (x), not 1

b

∑
f b(x).

In�nitesimal Jackknife (IJ) gives variance calculation for average
without bootstrapping:

var(f (x)) ≈
n∑

i=1

cov(T(x),Ni )
2

T(x) = vector of values from trees.

Ni = number of times obs i replicated in each bootstrap.
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In�nitesimal Jacknife
IJ de�ned for a large class of models:

Ui = lim
ϵ→0

θ̂((1− ϵ)P̂ + ϵδXi
)− θ̂(P̂)

ϵ
, V̂ij =

∑
U2
i

allows a covariance estimate between θ̂1 and θ̂2

ĉov(θ̂1, θ̂2) =
∑

U1
i U

2
i

Results in familiar estimates for M-estimators:

θ̂ = argmax
∑

M(Zi , θ) ⇒ Ui =
[∑

d2Mi/dθ
2
]−1

dMi/dθ

For ensembles, derivative is given by inclusion probability

weights

F (x) =
∑

S⊂1,...,n

(∏
i∈S

wi

)
f (x ;ZS) → Ui = cov(f ,Ni )
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Bias Corrections for IJ Variance Estimates
In IJ formula

var(f (x)) ≈
n∑

i=1

cov(T(x),Ni )
2

cov(T(x),Ni ) taken over in�nite trees.

Over-estimate variance for common B .

Bias in IJ estimated from
k

B
var(T(x))

(k = subsample size; more accurate formulae are trivially di�erent)

var(f (x)) ≈
n∑

i=1

cov(T(x),Ni )
2 − k

B
var(T(x))

For small B this can be negative!

Theory applies to subsamples with replacement sized k < n, rather
than bootstrap samples. We use k = n/2. 25 / 43



In�nitesimal Jacknife Reproduction Intervals
10 data sets lets us get an idea of coverage

For each data set

1 Fit random forest f (x) + predict at new point (blue *)

2 Produce IJ variance estimate + calculate RI (red)

3 20 bootstraps to estimate variance + calculate RI (green)

Note: 5,000 trees used in this forest.
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If You Were Going to Bootstrap Anyway....

IJ variance calculations only use ensemble structure.

Bootstrap for UQ

Or use f (x) = 1
B

∑
f b(x) and IJ

Applies to any learner (if B ≈ 1000)

IJ and ensemble of 500 boosted tree models:

IJ gives more variable CI's, but corresponds to more stable
ensemble estimates.
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What About Bayes?

Alternative notion of inference:

Model data: P(Y |f (X )) and prior belief P(f (x))

Use conditional distribution P(f (x)|D) to describe uncertainty.

Credible intervals from posterior distributions.

Does not ask What if our data were (believably) di�erent?

Few Bayesian ML methods:

Gaussian Process models

Bayesian Additive Regression Trees

Some neural network methods (usually approx Bayesian)

Tend to be computationally expensive, but in-built UQ.
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Extensions: Combinations of Ensembles

Random forests can be boosted:

1 Fit f0(x) to (Xi ,Yi )
2 Fit f1(x) to

(Xi ,Yi − f0(Xi ))
3 Predict f0(x) + f1(x)

20% test error reduction

var(f0(x) + f1(x)) = var(f0(x)) + var(f1(x)) + 2cov(f0(x), f1(x))

and

cov(f0(x), f1(x)) ≈
n∑

i=1

cov(T0(x),N0
i )cov(T

1(x),N1
i )

(or ensure same subsamples for f0 and f1)
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Comparisons of Ensembles
Do di�erent learners give us di�erent answers?

var(f0(x)− f1(x)) = var(f0(x)) + var(f1(x))− 2cov(f0(x), f1(x))

for example

Models learned with/without features

Di�erent ensemble methods
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Interpretation and Inherited Variability
Bootstrap/IJ recipe

Explanation/summary on each member of bootstrapped
ensemble.
Bootstrap intervals for original summary, or IJ for average of
bootstraps.

Alternative summary = g(f (X1), . . . , f (Xk)) + inherit
variability in f
More complex, k × k covariance requires much larger B . 31 / 43



Testing Variable Importance

Hypothesis H0 = E (Y |X ) = f (X−1), or Y ⊥ X1|X−1

Conditional Randomization Test:

Simulate X̃1 ∼ X1|X−1

Re-�t F on (X̃1,X−1,Y )

Measure change in F/accuracy/other statistic

Compare to original data.

Knocko�s augment data to (X̃ ,X ,Y ) to run all tests at once
(under more conditions).

NOTE: simply training on (X−1,Y ) changes statistical properties
of F .
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Testing Variable Importance II

Examine D =
F (X̃1,X−1)− F (X1,X−1)
over feature space.

Often in the form of a grid:

Form χ2 statistic:
D̂

T Σ̂−1
D D̂ ∼ χ2N

Extensible to further tests for structure
F (X1,X2,X3) = G−2(X1,X3) + G−1(X2,X3).
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Testing the E�ect of Renovation
Renovation condition has four levels.

Conditional Randomization Test: predict and re-simulate as
multinomial; test statistic is out-of-bag R2 from ranger.
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E�ect of Changes in Maximum Temperature
Coleman et. al. 2018
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ML Plug-Ins for Causal Inference
Double Machine Learning; �treatment� D in model

Y = θD + G (X ) + ϵ

D = M(X ) + η

so that
EY |X = θM(X ) + G (X )

and estimating θ from Y , EY |X and D is biased.

However

(Y − E (Y |X )) = (D − E (D|X ))θ + ϵ = ηθ + ϵ

suggests

Regress Y on X to get F̂ (X ) and residual ϵ̂

Regress D on X to get M̂(X ) and residual η̂

Regress ϵ̂ on η̂ to estimate θ.
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Sample Splitting and Double Robustness

Why do things this way?

θ̂ =

∑
ϵ̂i η̂i
η̂2i

=
(ηiθ + ϵi + err(F̂ (Xi )))(ηi + err(M̂(Xi )))

η̂2i

=
1∑
η̂2i

[∑
η2i θ + ϵiηi + ϵierr(M̂(Xi )) + ηierr(F̂ (X )i ))

+err(F̂ (Xi ))err(M̂(Xi ))
]

If θ estimated independently of F̂ , M̂ then

ϵierr(F̂ (Xi )), ηierr(M̂(Xi )) are mean zero.

err(F̂ (Xi ))err(M̂(Xi )) → 0 if at least one does.

and Uncertainty Quanti�cation comes from regression for θ̂.
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E�ect of Renovation

Weak relationship between predicted price and predicted renovation
condition.

Weak relationship but may produce some correlation.

Multivariate regression of errors on errors:

Estimate Std. Error Pr(>|t|)

Condition1 0.001623 0.009203 0.860

Condition2 0.022005 0.055402 0.691

Condition3 0.056309 0.023567 0.017

Condition4 0.095079 0.022607 2.76e-05

M R-sq: 0.01243, Adj R-sq: 0.00979

F: 4.708 on 4 and 1496 DF, p: 0.00089
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A Little More Generally
Use ML to account for nuisance regression parameters (call this
F (X )).

But must be able to account for smoothing biases in estimating F̂ .

1 Double ML: use an appropriate score equation

ψ(θ,F ) = 0

such that ∇FEψ(θ,F )(F̂ − F ) = 0, eg via sample splitting.

2 Targeted ML: θ = G (P) for P = data distribution
De�ne E�cient In�uence Function:

g(z) =
d

dϵ
G ((1− ϵ)P + ϵδz)

Maximize the likelihood of (1− η)P̂ + ηg
Modify P̂, iterate until η̂ = 0.

Both require tailoring to speci�c situations, but provide a natural
means to plug ML into stats.
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Conclusions and Best Practices
Predictive uncertainty

treat f (x) as covariate
apply appropriate statistical model

simple models of Y on f (X ) usually works �ne (on test set)

Model uncertainty:

Bootstrap a generic method, lot of e�ort just for SD.

Ensembles ⇒ in�nitesimal jackknife avoids bootstrapping a
bootstrap

Still requires more work than optimal for prediction

Does allow comparison/combinations of models, UQ for
explanations.

Formalized inference:

Tests of structure of f (X ) dependent on retraining or high
dimensional covariances.

Sample splitting does allow for pre-estimated ML models as
plug-in to inference. But conditions may apply.
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