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Diagnostic Methods in Machine Learning

m Machine learning = high dimensional non-parametric
prediction.

m Enormously successful over past 30 years.
m But, deliberately avoids assumptions:

m Results in algebraically complex “black box™" prediction
functions.

m Provides little guidance as to what features are important or
how they affect predictions.

m Historically, ML philosophy opposed to interpretability as a
consideration.

m But heuristics (often from statisticians) often improved
popularity

m e.g. Gradient Boosting (Friedman 2001) and Random Forests
(Brieman 2001).

m Recent (last 5 years) more general rise in interest.
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The Doctor Just Won't Accept That

m Rise in publicly-explicit use of ML, increased demand for
explanations of black box models.

m Partly driven by professional fears.

m But explanations/diagnostics = software popularity long
before.

The Doctor Just Won’t Accept That!

Zachary C. Lipton
Carnegie Mellon University.
Amazon Al
zlipton@cmu. edu

“I work with medical data. We work with doctors and they're interested in predicting risk of mortality,

recognizing cancer in radiologic scans, and spotting diagnoses based on electronic health record
data. We can train a model, and it can even give us the right answer. But we can’t just tell the doctor
“my neural network says this patient has cancer!” The doctor just won't accept that! They want to
know why the neural network says what it says. They want an explanation. They need interpretable
maodels.”
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Why Care About Explanation?

Reasons to value insight into the black box:
m Confidence-building exercise (marketing)
m Basis for evaluating disagreement between experts
m Detection of anomalous/non-causal predictive behavior

m Explanation/description of causal relationships

m Subject access/transparency, legal obligations
But

PERSPECTIVE
[

nature
achine intellicence

machine intelligence Don’t Expl-Al-n Yourself:

Exploring "Healthy" Models in Machine Learning for Health

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin
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Agenda

Introduction

Part I: Global Interpretation

m Variable Importance
m Feature Effects

m Part II; Distillation

m Interpretable models
m Approximation by interpretable models
m Stability and when to care about it

m Part Ill: Local Explanations

m Local importances: LIME, SHAP, saliency
m Counterfactual Explanations
m From local to global

m Discussion

Most methods available in the iml package in R. See also Molnar,
2022, Interpretable Machine Learning
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Types of Explanation Strategy

Distinctions:

global/local : global patterns across whole populations vs "What
drove this particular prediction?"

model/summary/example : Mechanics of making a prediction
(human computability) vs indicator of important
effects vs how can | change prediction?

Global diagnostics usually about understanding a system

m Hypothesis generation/pattern discovery/inference.
m Sanity checks.

Local explanations driven by practitioner needs

m Justification, sanity check, recommendation

Can provide very different information.

Common approaches to both have often been poorly thought
out.
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Some Notation and Nomenclature

m Assume that we have a data set of n observations:

{(Xi, i)y

(also examples, realizations, ...)

m Each X; is a vector of p covariates
Xi = (Xi1, Xiz, .-, Xip)

(also features, predictors, variables,...)

m Data set is used to estimate (learn, train,...) a prediction
function F(xy,...,Xp)

m Use: X; = row of data set, X; = column (values for covariate
J). Xj = variable value, x_; = vector without element j.

Desired: some way to “understand” F(xi,...,Xp)
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Beijing Housing Data

Used for illustrations, predict log(totalPrice) from

m Lat, Lng m Construction Date
m Days On Market m Renovation
= online followers m Building structure
m square m m Ladder Ratio (resident to
m Number of elevator capacity)
m livingRoom m Elevator
: ﬂ;r:cv:enngRoom m Ownership > 5 years
m bathRoom m Subway access
m Building Type m District

randomForest /R used for demonstrations, but observations apply
to all ML.
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Part |: Variable Importance

Which Features Matter and How Much?

Can be thought of in two ways

m How much difference does changing the value of this feature
make?

m How much information does including this feature add?
In linear models ,
Y =00+ BiX+e
j=1
interpretation of 3; = how does changing X; affect prediction?

Tests of Hp : 3; = 0 are relative to the other features included.
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Variable Importance as Added Information

“Does x| contribute to predictive accuracy”?

Measure difference in test-set performance when training with
versus without Xj.
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Dependence on Feature Set

Repeat with 1ivingRooms removed, or with Square removed
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Look Out for Feature Distributions

livingRoom associated with Square = removing one transfers

“signal” to the other.
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Shapley Values
What feature set to measure against? All of them!

m Any ordering of features
m Importance of X; = change in test-accuracy when including it

versus those before it.
m Average over orderings.
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Shapley Values

Shapley values average contributions to prediction, but can be
helpful to show spread.

015

0.10

0.00

005
I

subway |
i

bathRoom

buildingType |
ladderRatio |

follow
q
gRoom
drawingRoom -|
Kitch

fiveY earsProperty

2

SAGE: Shapley Additive Global importancE, to distinguish from
local SHAP values.
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Kernel Shapley Calculations
Shapley values motivated from co-operative game theory:
The most equitable way of sharing revenues among a
set of actors.
m Original Shapley calculation = Monte Carlo average

m But for any subset S, Zjes ¢j = improvement in accuracy
from 0 to using Xs.

m Motivates least-squares criterion:

. p—1
e by = argminy S)—d-> ¢
Oreeatp = arEmin ) g ey (M) 700 2

for v(S) = the “value” of S

m Motivates sampling S at random, performing linear regression
on indicators /(j € S).
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Permutation Importance
Rather than re-train, can we remove information from X7
Permute the values of X in the data set (relative to other
covariates) to get X7.
Measure change in test-set accuracy on permuted data

Vip = = ZL Yi, F(XE, ..., Xip)) — L(Yi, F(Xi1s - - -, Xip))

I.ML‘J_L‘ JLJ'-LL
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The Problem with Permutation

m In a linear model y = fo + >°7_; Bjx;, VIi(F) = 267var(x;).
m What if we simulate from a ||near model, and train a random
forest to learn the linear model?
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Feature distributions again!

m bathRoom and square correlated.

m Permuting one creates combinations of 0 bathrooms in a huge
house or 4 bathrooms in something tiny.

m £ has no data near these combinations to tell it what to do.
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Permutation importance tends to over-emphasize correlated
features (but different reasons for different learners)
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Tests and Variations

Alternatives to permutations
m Conditional permutation:
m X7 ~ Xi|X; _; - simulate from conditional distribution
m Measure " L(Vi, F(X)) — L(Yi, F(X?))
m Re-learn F™(x) from permuted data, or F¥(x) with
conditional simulation. Measure Loss.
Under squared error
m Target for F is E(Y|X)
m Target for F4, F™, F<is E(Y|X )
but statistical properties vary.

See Uncertainty Quantification for tests.
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But What Does the Feature Do?

Define Individual Conditional Expectation of x; for obs

ICEj;(x;) = F(x;, Xi,—j)

i by

and the Partial Dependence Function as the average

PD;(x;) = ICE j(x;)-

Predicted y

1 AR 11111111 |
20 s

square
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Feature Distributions Again

In linear models, PD and ICE plots should also be linear.

When derived from RF trained on linear model:
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Gradient Based Alternatives
Conditional distribution-based summaries designed to
m focus on places we will want to make predictions
m avoid extrapolation
but require a model for Xj|X_;.

How about using gradients instead?

-5 (oo)

Accumulated Local Effects re-integrate to get gradients

ALE;(x;) / / x)dP(x|x;)dx;

In practice, done by discretising range of x; and often using finite

differences.
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Specifics
For a generic, non-differentiable F
Divide range of x; into k; bins of with h with end points z,
I=1,... k.
Calculate the average finite difference between bin-end points
over observations with x; in bin /
1 F(z(111)j, Xi,—j) — F(25, Xi—;)

5F,,-:N7U > p

Z/J'<X,'J'<Z(/+1)j

for N/j = Z(ZU < X,'J' < Z(/+1)j)-
Now record integral and center

ALEj(x) = > hiFy

Z)j<Xj
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[llustrated

Avoids extrapolation, need not recover additive effects.
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Comparison
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Does it Help with Extrapolation?

When we simulate from a linear model:

ALE
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Part 1I: Model Distillation

Instead of summarizing a model, approximate it with something you
can understand.

m Obtain or generate feature examples (pseudo-data)
m Black box “teacher” provides responses to be mimicked by
“student”
Why not just train the student using the original data?

m Student may serve as approximation only

m to aid understanding of large patterns
m as an indicator of spurious behavior

m Student may not perform well at data sizes available,
especially if it searches over structures.

m We may want to different distributions over features, eg to
localize.
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Generalized Additive Models

F(x) = fi(x) + ) + -+ B(xp)
flexible + visualisable univariate functions, but leaves out
interactions
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Generalized Additive Models

Distilling into GAMS avoids PD
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Distilling Decision Trees

m CART/CA.5 performs badly
because highly

6.1
variable/divides data Dsqm@
[ | Dlstl”atlon = generate as district = 2,3,4,5,6,7,9,11,1213 district = 2,3,4,6,6,11,12,13
much data as needed for
good performa nce square<53 square<59 district = 3456111213 square < 145
m Handy explanation for ; é é & 6
decision: last node before
leaf.
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Case Study Il

Gibbons et. al., 2013, Zhou? and Hooker, 2018

m Psych questionnaires pose significant response burden
(depression Q runs to 88 items)

m Can we shorten for screening purposes?
m Decision trees = sequence of questions.
m Adaptive: not everyone sees the same items

But trees are pretty bad predictors!

m Build random forest to predict depression based on 800
observations

m Generate 12,000 new data points, build tree to predict random
forest.

Depth 5 trees = RF accuracy, sensitivity/specificity > 0.8
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CAD-MDD Tree
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Distillation Reproducibility

RF trained with 3,000 points, trees distilled using 20,000 but still
get different answers.
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When Does Reproducibility Matter?

Unstable distilled model may be ok if:
m Student replaces teacher for prediction; e.g. for compression.
m “Here is our formula” suffices as an explanation.
m Student is not re-distilled (or not frequently).
But may be problematic when:
m Student model only used as approximation

m Explanations are intended as justifications (usually based on
causal reasoning).

Explanations are intended to motivate actions.

Student is re-distilled frequently.

Uncertainty due to distillation not easily represented (eg
searches over structures).

Particularly problematic for local distillation.
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Part Ill: Local Explanations
Much of recent attention around individual predictions
Why was my loan not approved?
Designed to
m Satisfy a “right to an explanation”
m Provide recourse for adverse decisions

m Provide a basis for disagreements (eg in treatment
recommendations)

m Used as a surrogate for/alternative to global understanding.
Local/Global diagnostics can provide very different information:

m Global variable importance: What large-scale changes make
most difference across the data set?

m Summaries of local explanations: What small-changes make
most difference to individual predictions?

But many of the same considerations apply.
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Local Interpretable Model-agnostic Explanations (LIME)

What features are most important = derivative of prediction w.r.t.
xj, but

m not all models are differentiable
m derivatives can be unstable

m large feature set = need to select a few to present
LIME builds a local LASSO model:

Q p
B = Z w(Xi, Zg) (f(zq) —Bo— Zﬁquj)z + /\Z 11
g=1 j=1

for Z, generated (or weighted) locally around X;.

A chosen to return 5 to 8 (tunable) features.
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Distillation Stability Again

LIME is a distillation method, but surely linear regression is pretty
stable? Let's use 1000 pseudo-examples.

Here we have applied LIME to the first point in the test set:

square | livingRoom | district6 | district8 | district10
0.00467 | 0.03950 | -0.11350 | 0.07707 | 0.10783

We'll repeat the exercise but re-draw the 1000 pseudo-examples:

square | livingRoom | drawingRoom | district6 | district10
0.002760 | 0.06624 0.001653 -0.02000 | 0.001565

Distilling with enough data will stabilize, but sample sizes needed
are big.
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Local Explanations: SHAP

Rather than how predictions change with the value of a feature
How does knowing the value of a feature change the
prediction?

Define
fo(xs) = / F (x5 x_s)(x_s|xs)dx_s

by integrating out the subset of features x_s.
m Over the marginal distribution of x_g, independent of xs (see
PD;(x)).
m Over the conditional distribution, estimated with a kernel
density
m By re-learning to predict y from Xs.
Examine change in prediction when adding x; to xs:

Ajs(x) = fsuj(xsuj) — fs(xs)

and follow Shapley by averaging over sequence of features to.add.
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SHAP to Explain Test Points

Different integration operators:

A{;’-(x) over different S:

[inaied] gt
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Local Explanations for Deep Learning: Saliency

m Explanations require features to be individually meaningful.
m Eg image data:

m no pixel values are individually interpretable

m but patterns of what influences prediction most might be.

m Instead, consider local gradients V£ (x)
m In deep learning, fits neatly into back-propagation.

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

(from https://christophm.github.io/interpretable-ml-book)
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With Attributions

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

Greyhound (Smoothgrad)  Soup Bowl (Smoothgrad) Eel (Smoothgrad)

Greyhound (Grad-Cam) Soup Bow! (Grad-Cam) Eel (Grad-Cam)
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Variations on Gradients

Empirically:
m saliency maps very unstable to perturbing x

m can find imperceptible perturbations that significantly change
explanation without changing classification

SmoothGrad solution
m Add noise to each pixel and calculate gradients
m average over many realizations
m Target = convolution [ Vf(x + z)¢,(z)dz
m Expensive + need to pick noise variance

Grad-CAM: focusses on convolutional layers, and thresholds by
direction towards a class of interest.
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Counterfactual Explanations

How could I change this decision?

If at x, find nearest x* so that S

rigina class: Desired class:
Loan rejected Loan approved

m f(x*) = desired outcome

m x and x* are close

m x — x* is sparse

*

m (x* is realistic?)

But:
m Challenging (model-specific) optimization
m “close” = 77

But proposed as legal way to satisfy provision of recourse.
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Counterfactual Explanations

How do | get more than 300 for my apartment?
Time Cond ladderRatio
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5
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From Local to Global

m Most local explanations = some form of feature attribution

m Some explicit: saliency/gradCAM, LIME, SHAP
m Some less so:

m Counterfactuals — feature difference with nearest positive class.

m Anchors (local rules) — use a subset of features (could also
provide weights).

m Framework: for each input x, f(x) also comes with attribution
A(x)
m Summarize collection of A(X;) for global understanding.

Will use Shapley, LIME, Saliency (from finite differences) for RF
trained on Beijing Housing Data for convenience.
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Variable Importance

Some summary of distribution:
Vj = ExS(Aj(X))

estimated from training/test/uniform data.
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Global versus Local
Accumulating local models tells you what is important for each
local effect; can be different from global importance:
f(x1,x2) = x1 + logit(10x2)

With, x1,x2 ~ U[0,1] x» gradients mostly much smaller (3e-6 vs 1)
although mean squared gradient is still large (6 vs 1).

Squared Gradients

00 04 08
100 150
L )

00 04 08

For most points, x> makes little difference, but global variance is
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Relationships with Features

How do feature attributions change across feature space?

livingRoom SHAP
livingRoom SHAP

50 100 150 200 250 300 0 100 200
square

300 400
followers

Build (interpretable?) model to predict importance of x; from other
features.

m Partial dependence plots within regions of a tree.
m Cluster explanations to select prototypes.
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Connections to Additivity
()= g(x)

Most A;(x) preserve some aspect of gj(x), and ignore gi(x).
(Especially if X; L Xj)

= (Xjj, Aj(Xi)) should be 1:1

Non-additivity measured by spread.

square SHAP.

fivingRoom SHAP
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Summary and Messages

m Field fast moving, many proposals, not all thought-out
m Warnings:

m Feature dependencies make a difference

m Beware of creating unreasonable feature combinations

m Searching for structure produces instability

m Simple checks:

m Does this method give me what | ought to find if | start from a
known model? (Apply to both model and ML alg that has
tried to learn it).

m Do | get the same answer if | re-run with a different seed?
(Not always sufficient).

m Questions of strategy

m What do | want to know about this model? Does this
approach answer that?

m Who is the audience for this explanation? Will they understand
what they are seeing? Do | want them to?

Happy Playing! But be careful.
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